[PDF] [PDF] Cours de Calcul stochastique Master 2IF EVRY - Département de

Un processus stochastique (ou fonction aléatoire) est une famille de Ces calculs sont utiles pour valoriser des zéro-coupons en finance : si B(t, T) est la valeur d'un ZC feuille de duplication aussi Addison-Wesley, Reading MA, 1968



Previous PDF Next PDF





[PDF] Calcul stochastique appliqué à la finance - Ceremade

Calcul stochastique appliqué à la finance L'hypothèse signifie simplement : "Si ma richesse aujourd'hui est nulle, elle ne feuille X au prix Xt et je place la différence Xt − Yt > 0 à la banque E[MtFs] ≥ Ms) pour tout s, t ∈ [0,T] tels que



[PDF] Cours de Calcul stochastique Master 2IF EVRY - Département de

Un processus stochastique (ou fonction aléatoire) est une famille de Ces calculs sont utiles pour valoriser des zéro-coupons en finance : si B(t, T) est la valeur d'un ZC feuille de duplication aussi Addison-Wesley, Reading MA, 1968



[PDF] Calcul et Contrôle Stochastique - Sorbonne Université

10 jan 2018 · Master de Mathématiques M1 2017-2018 Calcul et Contrôle 2 Introduction `a l' évaluation en finance, Vocabulaire et produits 15 2 1 Finance 10 Calcul stochastique `a temps continu, par rapport au brownien 111 c2(m a/c)2 d = 1 Dans le feuille de meme espérance et de variance plus petite



[PDF] Introduction aux Mathématiques et Mod`eles Stochastiques des

3 jui 2010 · Master 2`eme année, ISIFAR 1 1 Le probl`eme des produits dérivés en finance basiques en calcul stochastique qui fournit les outils mathématiques adéquats `a feuille autofinançant φ dont la valeur V (φ) vérifie : Cependant, il sera pertinent de choisir comme numéraire le prix zéro-coupon de ma-



[PDF] MARTINGALES POUR LA FINANCE - Département de

écoles et les étudiants en master MASS, finance ou ingénierie mathématique Cependant, matiques sophistiqués : processus stochastiques, calcul d'Itô, etc Toute introduction `a feuille autofinancé en temps continu Un portefeuille Π = ( βt 



[PDF] Les outils stochastiques des marchés financiers - CMAP

2 fév 2013 · babilistes réside dans le calcul stochastique, qui n'est autre qu'un calcul différentiel, Ce théorème est particulièrement important en finance, car il permettra de construire 0 [fm(As, Ms)]2d〈M〉s et théoriques (ma- feuille de couverture de ce produit et que le prix du portefeuille de couverture 



[PDF] Mémoire de Master II RECHERCHE OPERATIONNELLE - UMMTO

Je tiens `a témoigner ma reconnaissance `a dieu tout puissant, de m'avoir Dans le monde d'aujourd'huit, la finance joue une rôle des plus important théoriques:les probabilités (mouvement Brownien, calcul stochastique, feuille sont :

[PDF] INTRODUCTION AU CALCUL STOCHASTIQUE

[PDF] Cours de calcul stochastique - Département de mathématiques

[PDF] methodes de valorisation des stocks - AUNEGE

[PDF] TAUX DE SURCOTISATION - TEMPS PARTIEL et TEMPS - CDG81

[PDF] circulaire temps partiel 2016-2017

[PDF] Aire totale des prismes

[PDF] notice explicative calcul des surfaces de plancher - Canohes

[PDF] Aire des polygones - Sylvain Lacroix

[PDF] Aire d 'un quadrilatère quelconque - Numdam

[PDF] SCM : Et si l 'on reparlait de gestion de stocks - Supply Chain

[PDF] Cas #8211 évaluation de la taille d 'une équipe commerciale Cas - Free

[PDF] Taille optimale de l 'équipe commerciale - MemoPage

[PDF] modalités de calcul des tarifs de péage au sein des - Asecap

[PDF] Accueil de jeunes enfants - Caf

[PDF] La prestation de service unique Mode d 'emploi - Gisti

Cours de Calcul stochastique

Master 2IF EVRY

Monique Jeanblanc

Septembre 2006

2

Contents

1.1 Tribu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Existence d'une v.a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Variables gaussiennes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Convergence de v.a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1 Convergence presque s^ure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.2 Convergence quadratique, ou convergence dansL2() . . . . . . . . . . . . . . . 13

1.5.4 Convergence en loi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Processus stochastiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.1 Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.2 Processus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6.3 Processus croissant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6.4 Processus Gaussiens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7.1 Cas discret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7.5 Variance conditionnelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7.6 Formule de Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.8 Loi conditionnelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.8.2 Cas Gaussien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.9 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.9.1 Cas discret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.9.2 Cas continu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.10 Temps d'arr^et . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.10.3 Processus de Markov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.11 Rappels d'analyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3

2 LE MOUVEMENT BROWNIEN 23

2.1 Le mouvement Brownien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.1 Processus gaussien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Une notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.5 Equation de la chaleur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.6 Trajectoires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.8 Temps d'atteinte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.9 Brownien multidimensionnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.2 Processus d'Ornstein-Uhlenbeck . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.3 Modµele de Vasicek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 INT

3.2.3 Un exemple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.4 Martingale locale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Processus d'It^o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.4 Crochet d'un processus d'It^o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Lemme d'It^o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Premiµere forme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Cas multidimensionnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.4 Cas du Brownien multidimensionnel. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.5 Application µa la formule de Black et Scholes . . . . . . . . . . . . . . . . . . . . . 47

4 EQUATIONS DIFFERENTIELLES STOCHASTIQUES 49

4.1.5 Exemple : Martingale exponentielle . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.3 Formule de Black et Scholes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.4 Formule de Feynman-Kac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 EXEMPLES DE PROCESSUS D'ITO 55

5.2 Modµele de Cox-Ingersoll-Ross . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 De¯nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.1 Euclidian norm ofn-dimensional Brownian motion . . . . . . . . . . . . . . . . . 58

5.4.2 General de¯nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.3 Scaling properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4.4 Absolute continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5.1 Additivity of BESQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5.2 Bessel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5.3 Transition densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.5.4 Hitting times for Bessel processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5.5 Laplace transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Cox-Ingersoll-Ross processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6.1 CIR processes and BESQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6.2 Transition probabilities for a CIR process . . . . . . . . . . . . . . . . . . . . . . 65

5.6.3 CIR model for spot rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 CHANGEMENT DE PROBABILIT

6.1.3 Remarques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.5 Cas vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Application aux modµeles ¯nanciers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.2 Arbitrages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.3 Hedging methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.4 Arbitrage et mme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.3.4 Valorisation d'une option sur obligation µa coupons . . . . . . . . . . . . . . . . . 77

Begin at the beginning, and go on till you come to the end. Then, stop.

L. Caroll, Alice's Adventures in Wonderland

6CONTENTS

Chapter 1

dans tout le cours

de Breiman [?], Grimmett et Stirzaker [?], Jacod et Protter [?] ou encore Williams [?]. Voir aussi des

exercices dans [?] ou dans [?].

1.1 Tribu

cet espace. Dans la plupart des cas, la structure de n'a pas de r^ole µa jouer. Par contre, lorsque l'on

(Voir Breiman [?]). On pourra regarder le paragraphe concernant l'existence d'une v.a. (voir ci-dessous)

pour une approche du problµeme. Une tribu (¾-algebra en Anglais) surest une famille de parties de, contenant

Une tribu contient donc l'espace .

Un espace mesurable est un espace muni d'une tribu.

Proposition 1.1.1

Une intersection de tribus est une tribu.

SoitFune tribu. Une sous-tribu deFest une tribuGtelle queG ½ F, soitA2 GimpliqueA2 F.

La plus petite tribu contenant une famille d'ensembles est l'intersection de toutes les tribus qui conti-

Exemple 1.1.1

1 Give us the tools, and we will ¯nish the work. Winston Churchill, February 9, 1941. 7 Soit(;F)et(E;E)deux espaces mesurables. Une applicationfdedansEest dite(F;E)mesurable sif¡1(A)2 F;8A2 E, oµu f

¡1(A)def=f!2jf(!)2Ag:

B application mesurable de(;F)dansIR( donc telle queX¡1(A)2 F;8A2 BIR). Une constante est une v.a. de m^eme qu'une fonction indicatrice d'ensemble de la tribuF.

Proposition 1.1.2

Une v.a.Gmesurable est limite croissante de v.a. du typenX i=1a i11AiavecAi2 G. Une fonction nX i=1a i11AioµuAiest un intervalle. cette famille, on la note¾(A). Elle est l'intersection de toutes les tribus contenantA. contenant les deux tribusF1etF2. La tribu¾(X) est contenue dansF. C'est la plus petite tribu sur rendantXmesurable.

Une v.a.r.XestG-mesurable si¾(X)½ G.

petite tribu contenant les ensemblesfX¡1t(A)gpour toutt2[0;T]etA2 BIR. On la note¾(Xt;t·T). a)P() = 1; b)P([1n=0An) =P1 n=0P(An) pour desAnappartenant µaFdeux µa deux disjoints.

Notation:P(A) =R

AdP=R 11

A(!) = 1 si!2Aet 11A(!) = 0 si! =2A.

July 8, 20069

On aP(A) +P(Ac) = 1 pour toutAappartenant µaF.

SiA½B, alorsP(A)·P(B) etP(B) =P(A) +P(B¡A), oµuB¡A=B\Ac. (resp.An¾An+1), et siA=[nAn(resp.A=\nAn) alorsAappartient µaFetP(A) = limP(An). pour toutA2 C, oµuCest une famille stable par intersection ¯nie et engendrantF. AlorsP=QsurF. (c'est-µa-dire de montrer que siC12 C;C22 C, l'intersectionC1\C2appartient µaC). Un espace (;F;P) est ditcomplets'il contient tous les ensemblesGtels que inffP(F) :F2 F;G½

Fg= 0.

parF(x) =P(X·x).

Af(x)dx. En particulierP(X2[a;b]) =Rb

af(x)dx. Il nous telles queP(X·a) =P(Y·a);8a2IR, alorsXetYont m^eme loi, ce que l'on noteraXloi=Y.

1.3.1 Existence d'une v.a.

P(d!) =1

p

2¼exp¡!2

2 F

X(x) =P(X < x) =Z

11 !¡11 p

2¼exp¡!2

2 d! :

D'o'uXest une v.a. Gaussienne.

espace: soit = que la v.a. soit de loi gaussienne et on poseP=P1P2. Si on souhaite construire une v.a. de loi exponentielle, on choisit =IR+.

XdPque l'on noteE(X) ou

E XdP=R

IRxdPX(x).

XdP

E(©(X)) =Z

©(X)dP=Z

IR

©(x)dPX(x):

IRxf(x)dxetE(©(X)) =R

IR©(x)f(x)dx.

de la formee¸x;¸2IRpour avoirXloi=Y. fonction

Ã(t) =E(eitX) =Z

IR eitxPX(dx):

IReitxf(x)dx. La fonction car-

f(x) =1

2¼Z

1 ¡1 e¡itxÁ(t)dt

variable. Mais dans ce cas il n'y a pas de formule d'inversion simple. Pour conna^³tre la loi d'un couple

(X;Y), il su±t de conna^³treE(exp(¸X+¹Y)) pourtoutcouple (¸;¹). Lorsque la v.a.Xest positive,

Exemple 1.3.1

Exemple fondamental :SiXest une variable gaussienne de loiN(m;¾2), on a

E(e¸X) = exp(¸m+¸2¾2

2 );8¸2IR

Proposition 1.3.1

c'est µa dire

E(aX+bY) =aE(X) +bE(Y);

©(E(X)).

July 8, 200611

jXij¸ajXijdP!0 quand a! 1.

P(A\B) =P(A)P(B);8A2 F1;8B2 F2:

8A2 C1;8B2 C2oµuCiest une famille stable par intersection telle que¾(Ci) =Fi.

quotesdbs_dbs22.pdfusesText_28