[PDF] Chapitre 23 – Le produit vectoriel



Previous PDF Next PDF







Chapitre 23 – Le produit vectoriel

trouver un vecteur perpendiculaire à ce plan Puisqu’il y a deux choix possibles, la règle de la main droite choisie l’orientation pointant dans la direction tel qu’illustré sur le schéma ci-contre On utilise le vecteur unitaire nˆ pour désigner l’orientation du produit vectoriel : A B A B n v v v v × × ˆ = θ A r B r A B r r ×



Chapitre2 Vecteurs

Seconde 2 2 Vecteurs EXERCICE 2 2 Sur la figure ci-dessous, expliquer, en utilisant les termes direction, sens ou norme, pourquoi le vecteur −→ AB n’estégalà aucundes autresvecteursreprésentés



Chapitre2 Vecteurs

Définition2 7 (Produit d’un vecteur par un réel) Soit k un réel non nul et~u un vecteur non nul Alorslevecteurk~u estunvecteurdont: • ladirectionest cellede~u • lesens estceluide~u sik >0,le sensopposéde celuide~u si k



MOUVEMENT DʼUNE PARTICULE DANS UN CHAMP MAGNETIQUE

Vecteur perpendiculaire à v et à B Théorème du centre dʼinertie : Particule dans un champ magnétique Multiplions par B les deux membres Champ uniforme



GELE3222 - Chapitre 1

Trouver un vecteur unitaire ~Bde sorte que : 1 ~BjjA~ 2 ~B?A~si B~est dans le plan xy 1 Pour B~jjA~, il faut trouver un vecteur unitaire, et le vecteur unitaire de A~est une solution B~= A~ jAj = 5 ˆa x 2 ˆ y+ z p 25+4+1 = 1 p 30 5 ˆa x 2 ˆa y+ ˆa z 2 Un vecteur perpendiculaire donnera un produit scalaire nul On cherche B~de sorte



DROITES, PLANS ET VECTEURS DE L’ESPACE

Démontrer que la droite (EC) est perpendiculaire au plan (JKL) Démontrer que JKL est un triangle équilatéral II- Vecteurs de l’espace : 1) Notion de vecteur de l’espace : Les propriétés vues pour les vecteurs dans le plan (addition, multiplication par un



Champ et potentiel-vecteur magn¶etostatiques

Champ et potentiel-vecteur magn¶etostatiques 7 1 Introduction Les interactions magn¶etiques sont des interactions µa distance entre particules charg¶ees en mou-vement relatif Elles sont d¶ecrites par un champ vectoriel, le champ magn¶etique On con»coit dµes



Travaux dirigés corrigés Mécanique du Point Matériel

Montrer que le vecteur v3 r est perpendiculaire au plan (P) formé par les vecteurs v1 et v2 r 5 Montrer que le vecteur v4 r appartient au plan (P) 6 Déterminer le vecteur unitaire u r porté par le vecteur (v1 v2) r + 7 Calculer le produit mixte ( 1 v ,v 2,v 3) r r r et montrer qu’il est invariant par permutation circulaire Exercice 2



Electromagnétisme B - LESIA

Electromagnétisme B - équations de Maxwell dans un conducteur, locales et globales, potentiel scalaire et vecteur, équation de conservation de la charge; densité de charge et de courant électrique



Travail dune force - Dyrassa

est égal au produit scalaire du vecteur force par le vecteur déplacement On note : Schéma : Calculer le travail de la force sachant que : F = 10 N, ℓ = 7,70 cm et α = 30 ° Calculer le travail de la force sur le trajet AC puis sur le trajet CB Comparer les résultats obtenus et conclure

[PDF] exemple fiche grcf bts ag

[PDF] fiche descriptive appel d'offre

[PDF] fiche grcf accueil information et conseil

[PDF] fiche grcf commande fournisseur

[PDF] fiche grcf passation de commande

[PDF] fiche grcf bts ag appel d'offre

[PDF] fiche grcf facture client

[PDF] element de gymnastique au sol

[PDF] projet de cycle gymnastique niveau 1

[PDF] atelier gymnastique artistique

[PDF] gymnastique niveau 2

[PDF] fiche ressource gymnastique niveau 1

[PDF] saut de cheval gym figure

[PDF] groupe agrial

[PDF] agrial caen

Note de cours rédigée par : Simon Vézina Page 1

Chapitre 2.3 - Le produit vectoriel

La définition du produit vectoriel

Le produit vectoriel est une autre opération algébrique entre deux vecteurs dont le résultat

est un vecteur. On utilise l'opérateur "

× » pour désigner le produit vectoriel.

En géométrie euclidienne

1, le produit vectoriel entre une vecteur Av et Bv correspond au

produit des modules des composantes perpendiculaires entre les vecteurs

Av etBv dont

l'orientation du vecteur résultant se doit d'être perpendiculaire à

Av et Bv simultanément.

On utilise la fonction sinus et l'angle

θ entre les vecteurs Av et Bv pour obtenir les

composantes perpendiculaires d'un vecteur par rapport à l'autre : )sin(θBABAvvvv=× où BAvv× : Module du produit vectoriel entre le vecteur Av et Bv.

Av : Module du vecteur Av (222

zxAAAAy++=v)

Bv : Module du vecteur Bv (222

zxBBBBy++=v)

θ : Angle entre le vecteurs Av et Bv.

Pour identifier l'orientation du l'orientation du vecteur

BAvv×, il

suffit d'identifier un plan formé à l'aide du vecteur

Av et Bv et de

trouver un vecteur perpendiculaire à ce plan. Puisqu'il y a deux choix possibles, la règle de la main droite choisie l'orientation pointant dans la direction tel qu'illustré sur le schéma ci-contre.

On utilise le vecteur unitaire

nˆ pour désigner l'orientation du produit vectoriel :

BABAnvv

vv Ar Br

BArr×

Orientation du produit vectoriel

BAvv× à l'aide de la main droite.

Exemple :

Ar Br

BArr×

nˆ Ar Br BArr nˆ Ar Br

BArr×

1 L'espace euclidien permet d'évaluer les distances par le théorème de Pythagore (22yxd+=) .

Av Bv

θsinBv

Av

Note de cours rédigée par : Simon Vézina Page 2 En algèbre vectorielle euclidienne dans un plan cartésien xyz en trois dimensions, on

définit le produit vectoriel de la façon suivante : ( )( )( )kBABAjBABAiBABAnBABAxyyxxzzxyzzy vvv vvvv -+---==׈sin où

BAvv× : Produit vectoriel entre Av et Bv.

Av : Module du vecteur Av

Bv: Module du vecteur Bv

θ : Angle entre le vecteurs Av et Bv.

n

ˆ : Vecteur unitaire orientation

et kAjAiAAzyx vvvv++= kBjBiBBzyx vvvv++= Av Bv x y xA xB yA θ yB

BAvv×

z

Propriétés du produit vectoriel

Voici quelques propriétés du produit scalaire : Distributif ()()CABACBAvvvvvvv×+×=+×)( Anticommutatif ABBAvvvv×-=× Produit unitaire : kjivvv=×, ikjvvv=×, jikvvv=× (sens horaire) kijvvv-=×, ijkvvv-=×, jkivvv-=× (sens anti-horaire) Produit nul : 0=×iivv, 0=×jjvv, 0=×kkvv, 0ˆˆ=×nn Situation A : Le vecteur perpendiculaire. À partir de la définition du produit vectoriel, trouvez un vecteur perpendiculaire au vecteur kjiAvvvv263-+= et au vecteur kjiBvvvv52++-= simultanément.

Évaluons le produit vectoriel entre le vecteur

Av et Bv afin d'obtenir un vecteur

perpendiculaire à

Av et Bv simultanément :

()()()kBABAjBABAiBABABAxyyxxzzxyzzy vvvvv-+---=× ? ()()()()[]()()()()[]()()()()[]kjiBAvvvvv162312532256--+------=× ? ()()()kjiBAvvvvv66215430--+----=× ? kjiBAvvvvv121334+-=× iv jv kv Note de cours rédigée par : Simon Vézina Page 3

Exercice

Exercice 1 : Le calcul du produit vectoriel. À partir du vecteur kjiAvvvv235-+=et du vecteur kjiBvvvv++-=42 , on désire évaluer (a) le produit BAvv× et (b) l'angle θ entre le vecteur

Av et Bv.

Solution

Exercice 1 : Le calcul du produit vectoriel.

a)

Évaluons le produit vectoriel BAvv× :

()()()kBABAjBABAiBABABAxyyxxzzxyzzy vvvvv-+---=× ? ()()()()[]()()()()[]()()()()[]kjiBAvvvvv234522154213--+------=× ? ()()()kjiBAvvvvv6204583--+----=× ? kjiBAvvvvv2611+-=× b) Évaluons l'angle θ entre le vecteur Av et Bv : ( ) ( )222)2(35-++=Av ? 38=Av ( ) ( )22214)2(++-=Bv ? 21=Bv ( ) ( )22226)1(11+-+=×BAvv ? 798=×BAvv ()()2138=BAvv ? 798=BAvv À partir de la définition du module du produit vectoriel : ()θsinBABAvvvv=× ? ( )BABAvv vv×=θsin ? ( )()( )798798sin=θ ? ()1sin=θ ? °=90θquotesdbs_dbs35.pdfusesText_40