[PDF] Théorème de la bijection : exemples de rédaction



Previous PDF Next PDF







1 Montrer qu’un espace est (ou n’est pas) un espace vectoriel

M´ethode : Pour montrer qu’une famille a` n el´ ´ements est li ee, on peut effectuer un pivot, et montrer que´ le nombre de pivots est < a` n; cela fournit en meme temps une base de l’espace ˆ Exercice 6 1) Montrez que la famille F = ((1,1,1,1),(2,1,−1,0),(4,3,1,2)) est liee, et trouver une base de´ l’espace engendre par cette



Fiche méthode 3 : Montrer qu’une famille est libre 1 La

F HECHNER, ÉCÉ 2, Collège Épiscopal Saint Étienne Année 2014-2015 Fiche méthode 3 : Montrer qu’une famille est libre Danstoutelasuite,Edésigneunespacevectoriel(pasforcémentdedimensionfinie)



Montrer qu’une suite est constante

Montrer qu’une suite est constante Méthode : Pour montrer qu’une suite (u n) est constante, on montre que pour toutn,onau n+1 = u n Exercice 1 Soient les suites (u n) et (v n) définies par : u 0 =0 et u n+1 = u n +v n 2 pour toutn 0 Soient les suites (u n) et (v n) définies par : v 0 =12 et v n+1 = u n +2v n 3 pour toutn 0 On pose



Chapitre 4 Base et génératrice - univ-angersfr

Chapitre 4 Base et génératrice §1 Système lié ou libre Soient ~v1,··· ,~v m un système de vecteurs On se pose la question : Est-ce que le vecteur ~0 est une combinaison linéaire des ~v



Fiche méthode sur les tangentes - CanalBlog

Comment montrer qu’une tangente est parallèle à une droite d : Soit Ta la tangente , au point d’abscisse a, à une courbe Γ d’équation y = f ( x ) Soit d la droite d’équation : y = mx + p Ta ⁄⁄ d ⇔ f ‘( a ) = m Elles ont même cœfficient directeur Comment montrer qu’une tangente passe par un point M 0 ( x 0 , y 0) du



Fiche Méthode 14 : Diagonaliser une matrice, dire si elle est

F HECHNER, ÉCÉ 2, Collège Épiscopal Saint Étienne Année 2014-2015 Fiche Méthode 14 : Diagonaliser une matrice, dire si elle est diagonalisable



FONCTIONS DE CLASSE C FONCTIONS DE CLASSE C1

1 Montrer que f est impaire et continue sur 2 Montrer que f est de classe C1 sur 3 Donner le tableau des variations de f 4 (Q GpGXLUH O¶H[LVWHQFH G¶XQH DSSOLFDWLRQ UpFLSURTXH GH f impaire Correction 1 La fonction f est définie sur intervalle symétrique par rapport à 0 donc xx, x 2 112 si 0 0 si 0 eex x fx fxx xx x ­ ° z



1 Applications linéaires, Morphismes, Endomorphismes

C'est ce qu'il fallait montrer Le cas des isomorphismes est évidemment le plus favorable pour ce qui est de préserver les caractères libre et générateur des familles Corollaire 1 8 Si u: EFest un isomorphisme entre R-espaces vectoriels alors l'image arp u d'une aseb de Eest une aseb de F

[PDF] suite de cauchy exemple

[PDF] montrer qu'une suite est de cauchy pdf

[PDF] suite de cauchy exercices

[PDF] rapport jury capes interne anglais 2014

[PDF] rapport jury capes interne anglais 2016

[PDF] rapport capes espagnol 2016

[PDF] rapport de jury caplp lettres histoire 2016

[PDF] rapport du jury caplp 2015

[PDF] sujet caplp 2013

[PDF] methodologie caplp lettres histoire

[PDF] vecteurs orthogonaux formule

[PDF] vecteurs orthogonaux produit scalaire

[PDF] montrer que deux vecteurs sont orthogonaux dans l'espace

[PDF] économie et démographie economie approfondie

[PDF] deux vecteurs orthogonaux produit scalaire

ECE1-B2015-2016Théorème de la bijection : exemples de rédaction Le but de cette fiche est de faire un point sur le théorème de la bijection. Après un retour sur l"énoncé et sa démonstration, on illustrera l"utilisation de ce théorème en agrégeant les questions rencontrées lors des DS de l"année

2013-2014. Cela devrait vous convaincre, je l"espère, qu"il n"est pas envisa-

geable de perdre des points sur ces questions (toujours les mêmes!).

I. L"énoncé général du théorème

Théorème 1.Théorème de la bijection

On considère une fonctionf:I!Rdéfinie sur unintervalleI.1)fcontinue surI,

2)fstrictement

croissante surI.=)a)f(I)est un intervalle, b)f:I!f(I)est bijective, c)f1:f(I)!Iest continue et strictement croissante surf(I).1)fcontinue surI,

2)fstrictement

décroissante surI.=)a)f(I)est un intervalle, b)f:I!f(I)est bijective, c)f1:f(I)!Iest continue et strictement décroissante surf(I).Démonstration.(Cas où fest strictement croissante) a)f(I)est un intervalle car image d"un intervalle par une fonction continue (c"est une des conséquences du TVI). b)La fonctionf:I!f(I)est surjective puisque son ensemble d"arrivée coïncide avec son image. De plus, commefest strictement croissante, elle est injective.

La fonctionfest donc bijective deIsurf(I).

c)Montrons quef1:f(I)!Iest aussi strictement monotone. Il s"agit de montrer :8(u1;u2)2(f(I))2; u1< u2)f1(u1)< f1(u2).

Soientu1etu2deux éléments def(I). Ainsi :

il existex12Itel queu1=f(x1), il existex22Itel queu2=f(x2). D"oùf1(u1) =f1(f(x1)) =x1etf1(u2) =f1(f(x2)) =x2. L"implication à montrer s"écrit donc :f(x1)< f(x2))x1< x2. On la démontre par contraposée : six1>x2alorsf(x1)>f(x2)carfest crois- sante. Le caractère continu def1, plus technique, n"est pas démontré ici.Remarque Le pointa)est une conséquence du TVI et est essentiel pour démontrer le caractère continu def1. Le théorème de la bijection est donc souvent présenté comme un corollaire du TVI. Toutefois, citer le TVI au lieu du théorème de la bijection sera considéré comme une erreur de rédaction : les hypothèses et résultats du théorème de la bijection sont plus précis. La démonstration du pointc)fait apparaître la propriété suivante. Pour toutx1,x2,éléments deDf:f(x1)< f()< f(x2)f

1strictement croissante==========)x1< < x2Évidemment, cette propriété est aussi vérifiée pour des inégalités larges.

Cette propriété donne aussi souvent lieu à des questions dans les concours.1 ECE1-B2015-2016II. L"énoncé adapté aux questions

Théorème 2.

On considère une fonctionf:I!Rdéfinie sur unintervalleI.1)fcontinue surI,

2)fstrictement

monotone surI.)Alors pour touty2f(I), l"équationy=f(x)admet uneuniquesolutionx2I.Démonstration.

C"est un corollaire direct du théorème

1 La fonctionf:I!f(I)est bijective. On en déduit que tout élément y2f(I)admet un unique antécédentxdans l"intervalleI.Remarque Les questions nécessitant ce théorème sont facilement repérables : " Montrer qu"il existe ununique2:::tel que ... » " Montrer que l"équationf(x) =:::admet uneuniquesolution dans ... » La rédaction correcte d"une telle question demande de la rigueur. Une erreur classique et lourdement pénalisée consiste à oublier de préciser les intervalles considérés (Ietf(I)). Le théorème suivant permet de préciser la nature de l"intervallef(I).

Théorème 3.

SoitIun intervalle d"extrémitésaetb(chacune pouvant être infinie). Soitf:I!Rune fonction continue et strictement monotone surI. a)Alorsf(I)est un intervalle d"extrémitéslimx!af(x)etlimx!bf(x). b)De plus, les intervallesIetf(I)sont de même nature : fermés (comme[1;2],[1;+1[,] 1;2]), ouverts (comme]1;2[,]1;+1[,] 1;2[), ou semi-ouverts (comme]1;2],[1;2[).Tableau récapitulatif. Le tableau suivant permet de faire un point sur les différents types d"inter- valles rencontrés.Nature de l"intervallef(I)ICasfstrictement croissante surICasfstrictement décroissante surI[a;b][f(a);f(b)][f(b);f(a)][a;b[[f(a);limx!bf(x)[]lim x!bf(x);f(a)]]a;b]]lim x!af(x);f(b)][f(b);limx!af(x)[]a;b[]lim x!af(x);limx!bf(x)[]lim x!bf(x);limx!af(x)[Remarque Les tableaux de variation constituent un outil de base dans la rédaction des questions s"appuyant sur le théorème de la bijection. Une fois établi, un tel tableau permet la lecture rapide : des intervallesIde stricte monotonie def, des intervallesf(I)correspondants. Nous considérerons dans les illustrations suivantes que les tableaux de varia- tions sont déjà réalisés. (en cas de doute, se référer aux corrigés précédemment fournis)2

ECE1-B2015-2016III. Illustration sur des exemples

III.1. Énoncé du DS1

Exercice 1

On considère la fonctionfdéfinie par :f(x) =x+ 1 +x1 + lnxx 2. Cette fonction estC1surDf=]0;+1[et son tableau de variation (com- plété avec les informations prouvées ci-dessous) est :x

Signe deg(x)Signe def0(x)Variations def0+1+

1+1+11

2 <0 01 2 a.Montrer que l"équationf(x) = 0admet une unique solution surDf.

On la notera.

b.Montrer que :12 < <1.

Démonstration.

a.On sait que :

1)fest continue sur]0;+1[,

2)fest strictement croissante sur]0;+1[.

De plus,f(]0;+1[) = ] limx!0+f(x);limx!+1f(x)[ = ] 1;+1[.

D"après le théorème de la bijection, la fonctionfréalise une bijection de]0;+1[dans] 1;+1[.

Or02] 1;+1[. On en déduit que l"équationf(x) = 0admet une unique solutionx2]0;+1[.b.On remarque que : f12 =12

4ln2<0,

f() = 0, f(1) = 2>0.

Ainsi on a :f12

< f()< f(1). Or, d"après le théorème de la bijection,f1:] 1;+1[!]0;+1[ est strictement croissante. En appliquantf1à l"inégalité précédente, on obtient :12 < <1.3

ECE1-B2015-2016III.2. Énoncé du DS5

Exercice 2

On considère la fonctionfdéfinie par :f(x) =(x+ 1)ln(x+ 1)x En posantf(0) = 1, on prolonge la fonctionfen une fonctionC1sur D f= [1;+1[(faire l"étude!). Son tableau de variation (complété avec les informations prouvées ci-dessous) est :x

Signe def0(x)Variations def10+1++

00+1+13

<24 >2 2 a.Démontrer qu"il existe un unique2[1;+1[tel quef() = 2. b.Montrer que :3< <4. (on donneln20;69etln51;61)

Démonstration.

a.On sait que :

1)fest continue sur[1;+1[,

2)fest strictement croissante sur[1;+1[.

De plus,f([1;+1[) = [f(1);limx!+1f(x)[ = [0;+1[.

D"après le théorème de la bijection, la fonctionfréalise une bijection de[1;+1[dans[0;+1[.

Or22[0;+1[. On en déduit que l"équationf(x) = 2admet une unique solutionx2[1;+1[.b.On remarque que : f(3) =4ln(4)3 =4ln(22)3 =8ln(2)3 <83

0;7 =5;63

<2, f() = 2, f(4) =5ln(5)4 >54

1;6 = 2.

Ainsi on a :f(3)< f()< f(4).

Or, d"après le théorème de la bijection,f1:[0;+1[![1;+1[ est strictement croissante. En appliquantf1à l"inégalité précédente, on obtient :3< <4.Remarque Le fait qu"une seule flèche (et pas 2!) soit dessinée dans le tableau de variation ne doit pas surprendre. En effet, on rappelle le résultat suivant (cfchapitre " Dérivabilité ») :f

0>0surIetf0ne s"annule qu"en

un nombre fini de points)fstrictement croissante surI4

ECE1-B2015-2016III.3. Énoncés du DS6

III.3.a) Énoncé de l"exercice 2

Exercice 3

Pour tout entier naturel non nuln, on définit la fonctionfnpar :

8x2R; fn(x) =11 +ex+n x

Cette fonction estC1surDf=Ret son tableau de variation (complété avec les informations prouvées ci-dessous) est :x

Signe def00n(x)Variations

def0nSigne def0n(x)Variations defn10+10+ nn 14 +n 14 +nnn

11+1+1

1n <0u n00 >0a.Montrer que l"équationfn(x) = 0possède une seule solution surR.

On noteuncette solution.

b.Montrer qu"on a :8n2N;1n < un<0.

Démonstration.

a.Soitn2N. On sait que :

1)fnest continue sur] 1;+1[,

2)fnest strictement croissante sur] 1;+1[.De plus,fn(] 1;+1[) = ] limx!1fn(x);limx!+1fn(x)[ = ]n;+1[.

D"après le théorème de la bijection, la fonctionfnréalise une bijection de] 1;+1[dans] 1;+1[.

Or02] 1;+1[. On en déduit que l"équationfn(x) = 0admet une unique solutionx2] 1;+1[. b.On remarque que : fn1n =11 +e1n

1 =e1n

1 +e1n

<0, fn(un) = 0, fn(0) =12 >0.

Ainsi on a :fn1n

< f n(un)< fn(0). Or, d"après le théorème de la bijection,f1n:] 1;+1[!] 1;+1[ est strictement croissante. En appliquantf1nà l"inégalité précédente, on obtient :1n < un<0.5 ECE1-B2015-2016III.3.b) Énoncés de l"exercice 3

Exercice 4

Soita >0. On considère la fonctionfdéfinie par :f(x) = exp[a(x1)].

A)Casoùa= 1.

Montrer que l"équationf(x) =xadmet une unique solution surR.

B)Casoùa >1.

a.Montrer que l"équationf(x) =xadmet deux solutions surR.

On noterar(a)la plus petite.

b.Montrer que :0< r(a)<1.Technique de démonstration. On souhaite trouver ici les solutions de l"équationf(x) =x. On ne peut appliquer directement le théorème de la bijection àf. On considère alors la fonctiong:x7!f(x)xde sorte que : f(x) =x,g(x) = 0Démonstration.On noteg:x7!f(x)x. A)Casoùa= 1. On a alors le tableau de variation suivant.x

Signe deg0(x)Variations deg11+10+

+1+100+1+1Ainsi,g(x) = 0admetx= 1comme unique solution. Il en est de même de l"équationf(x) =x.B)Casoùa >1. On a le tableau de variation suivant.x g

0(x)g11lnaa+10+

+1+1g(1lnaa )g(1lnaa )+1+10 e ar(a)01 0

On remarque que :

g 1lnaa =ea(lnaa 1lnaa =1a

1 +lnaa

<0 (cf corrigé du DS) a.Détaillons les éléments de ce tableau de variation.

Surl"intervalle] 1;1lnaa

On sait que :

1)gest continue sur] 1;1lnaa

2)gest strictement décroissante sur] 1;1lnaa

De plus :g(]1;1lnaa

[) = ]g(1lnaa );limx!1g(x)[ = ]g(1lnaa );+1[. D"après le théorème de la bijection, la fonctiongréalise une bijection de] 1;1lnaa [dans]g(1lnaa );+1[.

Or02]g(1lnaa

);+1[. On en déduit que l"équationg(x) = 0admet une unique solutionx2] 1;1lnaa L"équationf(x) =xadmet donc une unique solution sur]1;1lnaa [.6

ECE1-B2015-2016Surl"intervalle]1lnaa

;+1[.

On sait que :

1)gest continue sur]1lnaa

;+1[,

2)gest strictement croissante sur]1lnaa

;+1[.

De plus :g(]1lnaa

;+1[) = ]g(1lnaa );limx!+1g(x)[ = ]g(1lnaa );+1[. D"après le théorème de la bijection, la fonctiongréalise une bijection de]1lnaa ;+1[dans]g(1lnaa );+1[.

Or02]g(1lnaa

);+1[. On en déduit que l"équationg(x) = 0admet une unique solutionx2]1lnaa ;+1[. L"équationf(x) =xadmet donc une unique solution sur]1lnaa ;+1[. b.Notons tout d"abord que la plus petite solution def(x) =x, notéer(a) est dans l"intervalle]1;1lnaa [. On en déduit quer(a)<1lnaa <1.

D"autre part, on a :

g(0) =ea>0, g(r(a)) = 0.

Ainsi on a :g(r(a))< g(0).

Or, d"après le théorème de la bijection, la fonction g

1:]g(1lnaa

);+1[!] 1;1lnaa [est strictement décroissante. En appliquantg1à l"inégalité précédente, on obtient :0< r(a).

On en conclut :0< r(a)<1.Exercice 5

On considère la fonctionfdéfinie, pourx2[0;1]par :(x) =xex. Cette fonction estC1sur[0;1]et son tableau de variation est :x

Signe de0(x)Variations de01

00e 1e

1a.Montrer queréalise une bijection de[0;1]sur[0;1e

b.Montrer que sa fonction réciproque1est continue et strictement crois- sante sur[0;1e c.Dresser le tableau de variation de1.

Démonstration.

a.On sait que :

1)est continue sur[0;1],

2)est strictement croissante sur[0;1].

De plus,([0;1]) = [(0);(1)] = [0;1e

D"après le théorème de la bijection, la fonctionréalise une bijection de[0;1]dans[0;1e b.De plus, sa fonction réciproque1:[0;1e ]![0;1]est continue et strictement croissante sur[0;1e c.D"où le tableau de variation :x

Variations de10e

10011
7 ECE1-B2015-2016III.3.c) Énoncé du problème A

Exercice 6

On considère la fonctionfdéfinie par :f(x) =x3+ 5x1. Cette fonction polynomiale estC1surDf=Ret son tableau de variation (complété avec les informations prouvées ci-dessous) est :x

Signe def0(x)Variations def1+1+

11+1+10

1 01 2 13 8 a.Montrer que l"équationx3+ 5x1 = 0admet une unique solution dans

R. On notecette solution.

b.Établir que :0< <12

Démonstration.

a.On sait que :

1)fest continue sur] 1;+1[,

2)fest strictement croissante sur] 1;+1[.

De plus,f(] 1;+1[) = ] limx!1f(x);limx!+1f(x)[ = ] 1;+1[.

D"après le théorème de la bijection, la fonctionfréalise une bijection de] 1;+1[dans] 1;+1[.

Or02] 1;+1[. On en déduit que l"équationf(x) = 0admet une unique solutionx2] 1;+1[.b.On remarque que : f(0) =1<0, f() = 0, f12 =138 >0.

Ainsi on a :f(0)< f()< f12

Or, d"après le théorème de la bijection,f1:] 1;+1[!]0;+1[ est strictement croissante. En appliquantf1à l"inégalité précédente, on obtient :0< <12 .8quotesdbs_dbs8.pdfusesText_14