[PDF] EXERCICES corrigés de PROBABILITES



Previous PDF Next PDF







PROBABILITES – EXERCICES CORRIGES

Quelle est la probabilité d’obtenir un nombre pair ? Exercice n° 9 On lance un dé à 6 faces On suppose que la probabilité d’apparition de chaque face est proportionnelle au numéro inscrit sur elle Calculer la probabilité d’apparition de chaque face Calculer la probabilité d’obtenir un nombre pair Arbre pondéré Exercice n



CALCUL DES PROBABILITES - LMRL

1 a) On lance un dé cinq fois Calcule la probabilité pour obtenir au moins une fois 6 b) Combien de fois faut-il lancer le dé pour que la probabilité d'obtenir 6 soit au moins 0,9 ? 2 On a dans une urne trois boules rouges et deux boules vertes On tire deux boules sans les remettre Calcule la probabilité a) d'obtenir 2 boules vertes;



Probabilités Exercices corrigés

3 Calcul d’événements 1 4 Calcul d’événements 2 5 Calcul d’événements 3 6 Dés pipés 7 Pièces d’or 8 Fesic 2001 : Exercice 17 9 Fesic 2001 : Exercice 18 10 Fesic 2002 : Exercice 15 11 Fesic 2002 : Exercice 16 12 Fesic 2004 : Exercice 13 13 Fesic 2004 : Exercice 14 14 Urnes et dés, Pondichery 2004 15



EXERCICES corrigés de PROBABILITES

EXERCICES corrigés de PROBABILITES Calculer la probabilité d’un événement Exercice n°1: Un sachet contient 2 bonbons à la menthe, 3 à l’orange et 5 au citron



Calcul de probabilité

Calcul de probabilité Exercice 1 On veut constituer un bureau comprenant 3 femmes et 4 hommes Les 3 femmes sont choisies parmi 10 et les 4 hommes parmi 7 a- Combien de bureaux différents peut-on former ? b- On suppose que Mme A et Mr B ne peuvent appartenir à un même bureau, combien de bureaux différents peut-on former ? Exercice 2



Exercices corrigés de probabilités et statistique

Exercice 1 1 Énoncé Onétudielesconnexionsd’internautesàunsiteweb Celui-cipropose Question 3 Quelle est la probabilité d’avoir obtenu au moins un billet de



Statistique et probabilités : Probabilité

Statistique et probabilités : Probabilité 2nd MRC Exercice 1 Soit un jeu de 32 cartes avec 4 couleurs : trè e, carreau, coeur et pique Donner , par le calcul



CALCUL DE PROBABILITES - AlloSchool

III- Probabilité conditionnelle- indépendance de deux événements: A : " les boules tirées ont la même couleur "c' est à dire: 5 Exercice 5 : 3) Calculer la probabilité de chaque événement : C : " les boules tirées portent le même numéro sachant qu' il ont la même couleur "



Exercices et problèmes de statistique et probabilités

Exercices et problèmes de statistique et probabilités Thérèse Phan Jean-Pierre Rowenczyk 2e édition “doc” (Col : Science Sup 19 3x250) — 2012/4/27 — 14:21 — page i — #1



Gestion de projet - calcul probabiliste

Somme de deux variables aléatoires (A et B) avec sa distribution de probabilité A correspond à la durée en heures d'une tâche de peinture, B au travail préalable de préparation du mur Université de Lorraine 5 Probabilité corespon-dante Pi Moyenne = E(D) = somme des Pi Di Variance = somme des Pi ((Di - E(D))^2 21 0,2 4,2 4,23 25 0,4 10

[PDF] aire de l'arbre de pythagore

[PDF] exercice arbre de pythagore

[PDF] fractale

[PDF] arbre pythagoricien

[PDF] arbre généalogique excel

[PDF] modèle arbre généalogique vierge 10 générations

[PDF] modele arbre genealogique a completer

[PDF] arbre généalogique vide

[PDF] séquence arbre généalogique cp

[PDF] séquence frise chronologique ce1

[PDF] arbre généalogique cm2

[PDF] ligne de vie ce1

[PDF] arbre généalogique ce1 lutin bazar

[PDF] les 3 grandes périodes de l histoire de rome

[PDF] saturne dieu

Calculer la probabilité d'un événement

Exercice n°1:

Un sachet contient 2 bonbons à la menthe, 3 à l'orange et 5 au citron. On tire, au hasard, un bonbon du sachet et

on définit les événements suivants :

A : " le bonbon est à la menthe » ;

B : " le bonbon est à l'orange » ;

C : " le bonbon est au citron ».

1.Détermine les probabilités p(A) puis p(B) et p(C).

2.Représente l'expérience par un arbre pondéré ( on fait f

igurer sur chaque branche la probabilité associée).

Solution :

1.Calcul de probabilités.

Com me le bonbon est tiré au hasard, alors chaque bonbon a la même chance d"être tiré. Le nombre d"issues possibles est de 10 ( 2 + 3 + 5 = 10). L"événement A est constitué de deux issue favorables, on a donc : p(A) = 102
L"événement B est constitué de trois issue favorables, on a donc : p(B) = 103
L"événement C est constitué de cinq issue favorables, on a donc : p(C) = 105

2.Arbre des possibles

A 0,2 0,3 B 0,5 C

On vérifie que 0,2 + 0,3 + 0,5 = 1

Exercice n°2 :

Un jeu de 32 cartes à jouer est constitué de quatre " familles » : trèfle et pique, de couleur noire ; carreau et coeur, de couleur rouge. Dans chaque famille, on trouve trois " figures » : valet, dame, roi. On tire une carte au hasard dans ce jeu de 32 cartes. Quelle est la probabilité des événements suivants :

1." La carte tirée est une dame. »

2." La carte tirée est une figure rouge. »

3." La carte tirée n'est pas une figure rouge. »

Solution :

1." La carte tirée est une dame. »

Dans un jeu de 32 cartes, il y a 4 dames, soit 4 possibilités, ou cas favorables, pour l"événement A.

Le nom

bre de cas possibles est égal au nombre total de cartes, soit 32.

D"où

p(A) = 81
324
Conclusion : La probabilité de tirer une dame est 81

2." La carte tirée est une figure rouge. »

Dans un jeu de 32 cartes, il y a 3 figures carreaux et 3 figures cœurs, 6 possibilités, ou cas favorables, pour

l"événem ent B.

D"où

p(B) = 163
326
Conclusion : La probabilité de tirer une figure rougeest 163

3." La carte tirée n'est pas une figure rouge. »

L"événement C est l"événement contraire de B. Donc p(C) = 1 - p(B) p(C) = 1 - 1613
16316
163
Conclusion : La probabilité de ne pas tirer une figure rouge est 1613

Exercice n°3 :

Déterminer la probabilité de tirer un as ou un coeur dans un jeu de 32 ca rtes.

Solution :

Dans un jeu de 32 cartes, il y a 3 as ( le carreau, le trèfle, le pi c ), 1 as cœur et 7 cœurs . Il y a donc 11 chances sur 32 de tirer un as ou un coeur soit une probab ilité de 3211

Exercice n°4:

Un sac opaque contient les boules représentées ci-dessous ; un nom bre de points est indiqué sur chacune d'elles. On tire au hasard une boule et on lit le nombre de points.

Solution :

1.L'arbre pondéré des possibles.

Les résultats possibles sont : 1, 2, 3, 4

1

4,0104

3,01032

2,0102

3

1,0101 4

On remarque que la somme des probabilités est égale à 1 : 0,4 + 0,3 + 0,2 + 0,1 = 1

2.Probabilité de l'événement A : " obtenir au moins 2 points »

L"événement contraire de A est : " obtenir 1 point »

On a donc

p(non A) = 0,4 Comme p(A) + p(non A) = 1 , alors p(A) = 1 - p(non A) = 1 - 0,4 = 0,6 Conclusion : La probabilité de l"événement a est 0,6

Exercice n°5 :

Un écran LCD de forme rectangulaire a pour dimensions 60 cm

45 cm. La partie principale de l'écran est

elle-même représentée par un rectangle de dimensions 48 cm

36 cm.

Sachant qu'un pixel de l'écran est défectueux, détermine la probabilité de l'événement A défini par : " le pixel défectueux se trouve sur la partie principale de l'écran ».

1.Dessine l'arbre des possibles par les probabilités

données sous form e fractionnaire et décimale.

2.Calcule la probabilité de l'événement A : " obtenir

au m oins 2 points ». 45 cm
36 cm

48 cm60 cm

Solution :

La probabilité cherchée est :

p(A) = écranl'de totaleaireprincipale partie la de aire

Avec aire de la partie principale = 48 cm

36 cm = 1 728 cm

2 et aire totale de l'écran = 60 cm

45 cm = 2 700 cm

2

D'où

p(A) = 64,0700 2728 1.

Conclusion : p(A) = 0,64

Expérience à deux épreuves

Exercice n°6:

Un joueur de tennis a droit à deux tentatives pour réussir sa mise en jeu. Gwladys réussit sa première balle de service dans 65 % des cas. Quand elle échoue, elle réussit la seconde dans 80 % des cas.

Quelle est la probabilité pour qu'elle commette une double faute ( c'est-à-dire qu'elle échoue

deux fois de suite) ?

Solution :

Pour la première balle de service elle réussit dans 65 % des cas, donc elle é choue dans 35 % des cas. Pour la seconde balle de service elle réussit dans 80 % des cas, donc elle échoue dans 20 % des cas. Donc 20 % de 35 % des mises en jeu effectuées ne sont pas réussies.

On a :

100707,035,02,010035

10020
Conclusion : La probabilité pour que Gwladys commette une double faute est de 1007

Exercice n°7 :

Une urne contient 5 boules indiscernables

au toucher : deux bleues " B » et trois rouges " R ». On dispose également de deux sacs contenant des jetons : l'un est bleu et contient un jeton bleu " b » et trois jetons rouges " r », l 'autre est rouge et contient deux jetons bleus " b » et deux jetons rouge " r » On extrait une boule de l'urne, puis on tire un jeton dans le sac qui est de la même couleur que la boule tirée.

1.Combien y a-t-il d'issues possibles ?

2.A l'aide d'un arbre pondéré, détermine la probabilité de chacune de ses issues.

3.Détermine la probabilité d'événement A : " la boule et le jeton extraits sont de la même

couleur »

Solution :

1.Nombre d'issues possibles.

Si la prem

ière tirée est bleue, le jeton tiré peut-être bleu ou rouge, soit deux résultats possibles (B, b) et (B, r) Si la première tirée est rouge, le jeton tiré peut-être bleu ou rouge, soit deux résultats possibles (R, b) et (R, r).

Conclusion :

Il y a 4 issue possible.

2.Arbre pondéré des possibles

1 er tirage2

ème

tirage Isssues Probabilités

1/4b (B, b)

p(B,b) = 202
41

52 101

B

2/53/4r (B, r)

p(B,r) = 206
43

52 103

3/52/4b (R, b) p(R,b) =

206
42
53103
R

2/4r (R, r)

p(R,r) = 206
4 2 53103

3.Probabilité de l'événement A : " la boule et le jeton extraits sont de la même couleur »

L"événem

ent A est constitué de deux événement élémentaires (B, b) et (R, r ). p(A) = p(B, b) + p(R, r) = 52
104
103
101
Conclusion : La probabilité de l'événement A est 52

Exercice n°8 :

Dans une urne, il y a cinq boules rouges (R), deux boules bleues (B) et une boule verte (V), indiscernables au

toucher. On tire successivement et sans remise deux boules. On veut déterminer la probabilité de tirer deux boules de la même couleur.

1.Représente sur un arbre tous les possibles en indiquant sur les branc

hes correspondantes la probabilité de tirer deux boules de chaque tirage lors des deux tirages. 2. En déduire la probabilité d'avoir : le couple (R, R), le couple (B, B) , le couple (V, V).

3.En déduire la probabilité de tirer deux boules de même couleur.

Solution :

1.Représentation de l'arbre pondéré des possibles

858281

RBV

747271757171757270

R B V R B VR B V 2.

Probabilité d'avoir le couple (R, R)

On a :

5620
74
85
soit

5620 des expériences qui donneront comme résultat (R, R)

Probabilité d"avoir le couple (B, B)

On a :

562
7 1 82
soit

562 des expériences qui donneront comme résultat (B, B)

Probabilité d"avoir le couple (V, V)

On a : 070

81 soit aucune expérience qui donnera comme résultat (V, V)

3. Probabilité de tirer deux boules de même couleur.

Comme ces issues sont incompatibles, pour calculer la probabilité de tirer deux boules de même couleur, on

ajoute les probabilités de ces issues.

On a :

5622
562
5620
Conclusion : La probabilité d'obtenir deux boules de même couleur est de 5622

Exercice n°9

A bord d'un bateau, le tiroir des féculents contient deux sachets de riz et trois sachets de pâtes, et le tiroir des

protéines contient trois boites de thon, deux boites de veau et une boîte de viande de boeuf.

Tiroir des féculents

R R P P P

Tiroir des protéines

T T T V V B B B

Pour composer son repas, un matelot prend d'abord un sachet au hasard dans le tiroir des féculents puis,

toujours au hasard, une boîte dans le tiroir des protéines.

Construis l'arbre pondéré des possibles de cette expérience à deux épreuves puis le compléter en calculant les

probabilités associées à chaque issue.

Solution :

1 ere

épreuve 2

ème

épreuve Isssues Probabilités T (R, T ) p (R, T ) = 306
63
52 51
3/6 R 2/6 V (R, V ) p (R, V ) = 304
62

52 152

1/6

2/5 B (R, B ) p (R, T ) =

302
61

52 151

3/5 T (P, T ) p (P, T ) =

309
63

53 103

3/6 P 2/6 V (P, V ) p (P, V ) = 306
62
53 51
1/6 B (P, B ) p (R, T ) = 303
61
53 51
quotesdbs_dbs22.pdfusesText_28