[PDF] Calcul du rayon du cercle inscrit à un triangle rectangle



Previous PDF Next PDF







Calcul du rayon du cercle inscrit à un triangle rectangle

a)Calculer le rayon du cercle inscrit du triangle rectangle dont les côtés mesures 3 , 4 et 5 b)Calculer le rayon du cercle inscrit au triangle EFG rectangle en E tel que EF = 5 et FG = 13 Exercice 2: Soit ABC un triangle rectangle en C Nous appellerons a la longueur du coté [BC] , b la longueur du côté [AC] et c la longueur du coté



Cercle inscrit dans un triangle rectangle

rayon du cercle inscrit Scolies : (1) P' est le point de contact du A-excercle de ABC avec (BC) (2) Nous savons que AR = AQ = r (3) Vision triangulaire A B C I P Q R B" C" B' C' A' A" 1 r r r r r r • Notons B', C' les milieux resp de [CA], [AB] et B", C" les points d'intersection resp de (B'I) avec la B-hauteur (BA) de ABC,



Quadrilatères possédant un cercle inscrit : Calcul du rayon

Quadrilatères possédant un cercle inscrit : Calcul du rayon de ce cercle Dans ce devoir, on utilisera sans démonstration le théorème suivant : Un quadrilatère convexe possède un cercle inscrit si et seulement si la somme des longueurs de ses côtés opposés est la même pour les deux couples de côtés opposés



LE CERCLE Ce travail sur le cercle a été réalisé par un

2 Cercle inscrit – Cercle circonscrit à un triangle Cercle circonscrit à un triangle : C’est le cercle qui passe par les trois sommets du triangle Son centre est le point d’intersection des médiatrices des contés du triangle Cercle inscrit à un triangle : C’est le cercle tangent intérieurement aux trois cotés du triangle



Relation d’Euler entre cercles circonscrit et inscrit par

1 Relations entre le rayon du cercle inscrit et celui du cercle circoncscrit Faites une figure avec un triangle ABC non plat (angles aux sommets α, β, γ), parcouru dans le sens direct, avec I l’intersection des bissectrices intérieures, T1 (sur BC), T2 (sur CA), T3 (sur AB) les points de tangences du cercle inscrit avec les côtés



Géométrie - Droite et cercle d’Euler

Le triangle IJK est l’image du triangle ABC par une homothétie de centre G et de rapport 1=2 Le rayon du cercle circonscrit à IJK est donc moitié moindre que le rayon du cercle circonscrit à ABC; et en notant O0le centre du cercle circonscrit à IJK, on sait que O;G;O0sont alignés dans cet ordre, avec GO = 2GO0 Définition 3



LE CERCLE – Applications et problèmes - CORRIGÉ

4 Le centre du cercle, O, est le point d’intersection des deux médiatrices 5 Tracer le cercle de centre O et de rayon OP Le cercle devrait passer par A et B 6 Placer quatre points sur le cercle Tracer les angles ayant comme sommets ces quatre points Il est possible de vérifier que les angles sont identiques en les mesurant avec un



CHAPITRE V TRIANGLES ET CERCLES - LMRL

cercle qui est le cercle circonscrit du quadrilatère) • Théorème 15 (des angles tangentiels) Soient C(O,r) un cercle de centre O et de rayon r et BAC un angle aigu tel que A,B ∈C, le point C en dehors du cercle et (AC) tangente au cercle (on dit que BAC est un angle tangentiel ) Alors BOA BAC = ⋅2



ANGLES ET CERCLES AUTOEVALUATION

ANGLES ET CERCLES CTM 1 1 Angle inscrit et angle au centre 1 1 Rappels Une tangente est toujours perpendiculaire au rayon aboutissant au point de contact entre elle et le cercle

[PDF] Le Rayonnement

[PDF] Le rayonnement de lunion europeenne dans le monde

[PDF] le rayonnement du corps noir

[PDF] LE RAYONNEMENT SOLAIRE

[PDF] le realisme

[PDF] Le réalisme

[PDF] le réalisme a la manier de flaubert

[PDF] Le réalisme au 19ème siècle

[PDF] le réalisme en littérature pdf

[PDF] Le réalisme et le naturalisme

[PDF] le réalisme et le naturalisme seconde

[PDF] le réalisme et maupassant

[PDF] Le Réalisme et Naturalisme

[PDF] Le réalisme et naturalisme

[PDF] le réalisme evaluation de fin de séquence

Exercice 1 :

Soit ABC un triangle rectangle en C.

Nous appellerons a la longueur du coté [BC] , b la longueur du côté [AC] et c la longueur du coté [AB] . Soit I le centre du cercle inscrit à ce triangle et soit r le rayon de ce cercle.

1. Calculer l·MLUH GX PULMQJOH UHŃPMQJOH $%FB

2. Calculer les aires des triangles CIB , AIC et

BIA .

3. En déduire que ar + br + cr = ab , puis que

c b a ab r

4. Applications numériques : ( unité : le cm )

a)Calculer le rayon du cercle inscrit du triangle rectangle dont les côtés mesures 3 , 4 et 5. b)Calculer le rayon du cercle inscrit au triangle

EFG rectangle en E tel que EF = 5 et FG = 13.

Exercice 2:

Soit ABC un triangle rectangle en C.

Nous appellerons a la longueur du coté [BC] , b la longueur du côté [AC] et c la longueur du coté [AB] . Soit I le centre du cercle inscrit à ce triangle et soit r le rayon de ce cercle.

1. Montrer que BR = BT , puis que AS = AT.

2. Déterminer BR et AS.

THEME :

Calcul du rayon du cercle

inscrit dSun triangle rectangle

3. En constatant que BA = BT + TA, en déduire que :

) c - b a ( 2

1 r ou 2

c - b a r

FRUUHŃPLRQ GH O·H[HUŃLŃH 1 :

1. Aire du triangle ABC :

IH PULMQJOH $%F pPMQP UHŃPMQJOH HQ F O·MLUH GX PULMQJOH $%F HVP pJMOH j : 2 ab 2 b a 2

AC BCu u

2. Calcul des aires des triangles CIB , AIC et

BIA :

Aire du triangle CIB :

2 r a 2

IR BCu

Aire du triangle AIC :

2 r b 2

IS ACu

Aire du triangle BIA :

2 r c 2

IT ABu

3. Calcul de r en fonction de a , b et c :

I·MLUH GX PULMQJOH $%F HVP pJMOH j OM VRPPH GHs aires des trois triangles CIB , AIC et BIA .

BIAAICCIBABC AAAA

donc : 2 r c 2 r b 2 r a 2 ab 2 r c r b r a 2 ab

Puis en simplifiant par 2,

ab = a r + b r + cr ab = r ( a + b + c ) c b a ab = r r = c b a ab

4. Applications numériques :

Cas 1 : Rayon du cercle inscrit du triangle rectangle dont les côtés mesures 3 , 4 et 5.

I·O\SRPpQXVH GH ŃH PULMQJOH UHŃPMQJOH HVP D GRQŃ Ń 13B 0MLQPHQMQP OH ŃORL[ GH M HP N HVP V\PpPULTXHB

Nous pouvons poser a = 3 et b = 4 ou a = 4 et b = 3. Le rayon r du cercle inscrit est donc égal à : r = 112
12

5 4 3

4 3 u Cas 2 : Rayon du cercle inscrit du triangle EFG rectangle en E tel que EF = 5 et FG = 13. FMOŃXORQV PRXP G·MNRUG OM ORQJXHXU GX PURLVLqPH Ń{Pp B

Dans le triangle EFG rectangle en E

G·MSUqV OH POpRUqPH GH 3\POMJRUH QRXV MYRQV :

FG² = EF² + EG²

13² = 5² + EG²

169 = 25 + EG²

169 ² 25 = EG²

EG² = 144

EG = 144
= 12 Le rayon r du cercle inscrit est donc égal à : r = 2 6

2 6 6 5

12 5 30

12 5

13 12 5

12 5u u

u u u

Remarque :

GMQV GH QRPNUHXVHV IRUPXOHV PMPOpPMPLTXHV ŃRQŃHUQMQP OH PULMQJOH RQ XPLOLVH XQH GRQQpH V·MSSHOMQP OH

demi-périmètre. IH SpULPqPUH G·XQ PULMQJOH TXHOŃRQTXH GRQP OHV Ń{PpV PHVXUHQP M N HP Ń HVP pJMO j : a + b + c Le demi-périmètre p est alors égal à p = 2 c b a

GMQV OH ŃMV G·XQ PULMQJOH UHŃPMQJOH QRXV YHQRQV GH GpPRQPUHU TXH OH UM\RQ GX ŃHUŃOH LQVŃULP HVP j JMO j :

c b a ab r Nous avons également MYHŃ 6 O·MLUH GX PULMQJOH HP S le demi périmètre ) r = p S 2 c b a 2 b a r = p S

FRUUHŃPLRQ GH O·H[HUŃLŃH 2 :

1. Montrer que BR = BT , puis que AS = AT :

Soit C un cercle et soit M un point extérieur à ce cercle. Si (MA) et (MB) sont les tangentes issues de M à ce cercle en

A et B, alors MA = MB

( Cf. Thème : Tangente à un cercle ) Sans utiliser ce résultat, nous pouvons faire une démonstration rapide en utilisant le théorème de

Pythagore.

Dans le triangle BRI rectangle en R ,

G·MSUqV OH POpRUqPH GH 3\POMJore, nous avons :

BI² = BR² + RI²

BI² - RI² = BR²

BR² = BI² - r² (1)

Dans le triangle BTI rectangle en R ,

G·MSUqV OH POpRUqPH GH 3\POMJRUH QRXV MYRQV :

BI² = BT² + TI²

BI² - TI² = BT²

BT² = BI² - r² (2)

Des deux égalités (1) et (2), nous en déduisons :

BR² = BT²

Et comme BR et BT sont des nombres positifs ( longueurs de cotés de triangle ), nous avons :

BR = BT

Une démonstration identique permet de démontrer que AS = AT et même que CR = CS ( égalité déjà

connue car CR = CS = r ).

2. Calcul de BR et AS :

Le quadrilatère CSIR est un carré ( 3 angles droits et deux côtés consécutifs de même longueur )

Donc RC = r.

R est un point du segment [BC], donc BC = BR + RC

Donc a = BR + r

Et par suite BR = a - r

S est un point du segment [AC], donc AC = AS + SC

Donc b = AS + r

Et par suite AS = b - r

3. Calcul du rayon du cercle inscrit au triangle :

Nous avons :

BA = BT + TA

Or BR = BT et AS = AT

Donc BA = BT + TA

Donc : c = ( a ² r ) + ( b ² r )

c = a ² r + b - r c = a + b ² 2r

2r = a + b ² c

Et par suite

) c - b a ( 2

1 r ou 2

c - b a r

9pULILŃMPLRQ SRXU OHV GHX[ ŃMV QXPpULTXHV pPXGLpV GMQV O·H[HUŃLŃH 1

Cas 1 :

r = 1 2 2 2

5 - 4 3

Cas 2 :

r = 2 2 4 2

13 - 12 5

Remarque :

Le rayon du cercle circonscrit à un triangle rectanglH HVP pJMO j OM PRLPLp GH OM ORQJXHXU GH O·O\SRPpQXVHB

quotesdbs_dbs46.pdfusesText_46