[PDF] Electromagnétisme A Particule chargée dans un champ



Previous PDF Next PDF







Trajectoires de particules chargées aSalle

9 2 Particule dans un champ électrique 59 Au cours de l’étude du mouvement d’une particule élémentaire chargée, on néglige en général l’influence de son poids car sa valeur est petite devant les composantesde la force de Lorentz — Remarque — 9 2 Particule dans un champ électrique



P : MOUVEMENT D’UNE PARTICULE CHARGÉE DANS UN CHAMP

Une particule chargée de charge q>0, animée d’une vitesse e⃗, pénètre dans une région où règne un suivant une trajectoire circulaire et uniforme



Electromagnétisme A Particule chargée dans un champ

V - Mouvement d'une particule chargée dans un champ magnétique uniforme; équation horaire Particule de charge q et de masse m à l'origine O du repère, et de vitesse initiale v0 contenue dans le plan (yOz), de coordonnées (0, v 0 cos α, v 0 sin α) En t, la particule est en M ( x(t), y (t), z(t) )



Chapitre 42a – Trajectoire d’une particule dans un champ

alors le plan de la trajectoire circulaire change Trajectoire hélicoïdale non régulière 5 (principe de la « bouteille magnétique ») d’une particule chargée dans un champ magnétique non constant Vent solaire et aurore polaire Le Soleil expulse près de kg1×10 9 par seconde de matière sous forme de plasma 6 constitué en grande



˘ ˇˆ

Title (Microsoft Word - 06 Mouvement d'une particule charg\351e dans un champ \351lectro\205) Author: Ismael Created Date: 4/8/2006 7:56:13



04 Mouvement dune particule dans un champ magnétique

Une particule chargée entrant dans un champ magnétique avec une vitesse perpendiculaire à ????⃗⃗⃗ décrit un MCU dans un plan perpendiculaire au champ Le rayon de la trajectoire est donné par l'expression : qB mv R= (4) 4) Propriétés : La force de Lorentz & f m est centripète C'est elle qui est à l'origine du mouvement circulaire et



MOUVEMENTS DE PARTICULES CHARGEES

II- Mouvement d’une particule chargée dans un champ magnétique uniforme 1- Présentation du système Dans tout ce qui suit on envisagera l’étude de la trajectoire d’une particule chargée de charge q et de masse m dans le champ magnétique uniforme et constant B B0 e z =



I Mouvement hélicoïdal d’une particule chargée dans un champ

I Mouvement hélicoïdal d’une particule chargée dans un champ magnétique Un électron arrive dans une région de l’espace où un règne un champ magnétique uniforme et munie d’un repère orthonormé La vecteur vitesse de l’électron, à son entrée dans la zone de champ est :



1 Force de Lorentz - LN-SPE-2

2 Mouvement d’une particule chargée dans un champ électrique uniforme et constant 2 1 Cadre de l’étude Équation de la trajectoire : y(x) = eEx2 2mv2 0



Mécanique5–Travauxdirigés Langevin-Wallon,PTSI2017-2018

Calculons le décalage ∆y, en calculant l’équation de la trajectoire Par application du PFD à l’électron dans le référentieldulaboratoire, m d# v dt 0 R = −e # E soitenprojetant (ma x= 0 ma y= +eE 0 d’où v x= A v y= eE 0 m t+ B avec Aet Bdeux constantes

[PDF] exercice cyclotron corrigé

[PDF] mouvement d'une particule chargée dans un champ électrique pdf

[PDF] calculateur de limite de fonction

[PDF] particule chargée dans un champ magnétique avec frottements

[PDF] mouvement dans un champ de pesanteur uniforme exercices corrigés

[PDF] calculer une fonction dérivée

[PDF] graphe de fonction en ligne

[PDF] calcul aire sous la courbe méthode des trapèzes

[PDF] aire sous la courbe intégrale

[PDF] tp physique etude du mouvement d'un projectile

[PDF] aire sous la courbe statistique

[PDF] tp physique mouvement d'un projectile

[PDF] aire sous la courbe unité

[PDF] tp mouvement d'un projectile dans un champ de pesanteur uniforme

[PDF] aire sous la courbe pharmacocinétique

Electromagnétisme A

Particule chargée dans un champ électrique et dans un champ magnétique

Sommaire

Force de Lorentz

Travail, puissance de la force de Lorentz et énergie mécanique

Application: le canon à électrons

Equations horaires du mouvement d"une charge dans un champ électrique constant Applications: écran cathodique, expérience de Millikan de quantification de la charge Particule chargée dans un champ magnétique: pulsation et rayon de giration Applications: effet miroir, séparation isotopique, chambre à bulles, cyclotron, synchrotron Equations horaires du mouvement d"une charge dans un champ magnétique constant

Application: guidage des particules en mouvement

Oscillateur harmonique dans un champ magnétique: effet Zeeman Oscillateur harmonique excité par une onde électromagnétique: profil d"amortissement en fréquence, raies spectrales I - Force de Lorentz subie par une charge dans un champ électrique et dans un champ magnétique Une particule de charge q mobile, de vitesse v, plongée dans un champ électrique Eet dans un

champ magnétique B, subit la force de Lorentz:F= q (E+ vLB)Permet de définir la nature du champ électrique Eet du champ magnétique Bpar leur action sur

une charge q q E= force électrique , colinéaire au champ électrique (opposée ou même sens selon signe de q). q vLB= force magnétique , orthogonale à la fois à la vitesse vet au champ magnétique B.

Rappel sur le produit vectoriel:

||vLB|| = v B |sin(v,B)|

Si v= 0ou si v// B, pas de force magnétiqueUnités: Fen N, Een V/m; Ben T; q en C; ven m/s.

Rappel: charge élémentaire

e = 1.6 10 -19

C; proton: charge +e, électron: charge -e.

Dans tout le cours, les vecteurssont en caractères gras vLBorthogonal au plan (v, B) Règle de la main droitevers vous opposé II - Travail de la force de Lorentz et énergie mécanique Le travail élémentaire d"une force Fappliquée en M est le produit scalaire dW= F.dOM(unité: Joule) oùdOMest un déplacement élémentaire La puissance de la force Fest P= dW/dt = F.v avec v= dOM/dt (vecteur vitesse)

F.v= q (E+ vLB).v

comme(vLB).vest un produit mixte nul (vorthogonal àvLB), alors La force magnétique ne travaille pas; seule la force électrique travaille

La puissance de la force de Lorentz est

P= q E.v

(unité: W) vB vLB Bv vLB pouceindex majeurpouce index majeur Si m désigne la masse de la particule, le PFD implique: m dv/dt = q E+ q (vLB) Effectuons le produit scalaire avec v: d(½ m v²)/dt = q E.v

Si Edérive du potentiel électrostatique V

(unité: Volt), on a E= -grad(V) or dV= grad(V).dOM (par définition) d"où dV/dt = -E.v

Donc la quantité E

m= ½ m v² + q V est conservée

C"est l"énergie mécanique

de la particule chargée. E c= ½ m v²est l"énergie cinétique et E p= q V est l"énergie potentielle (unité: Joule).

Remarque: en présence de frottements, E

mn"est plus conservée et diminue.

Application: le canon à électrons (accélération)Métal chauffé(cathode temp T) potentiel

V = 0

Vitesse

d"émission thermique des

électrons

v0

Émission

d"électrons

Potentiel

V > 0

Vitesse des

électrons

v à déterminer

½ mv² - e V = ½ mv

0² + 0 = constante

Comme v0<< v v = (2 e V / m) 1/2

V = 10 000 V

v = 0.2 C

½ mv

0² = 3/2 k T (k constante de Boltzman) v

0= (3 k T / m)

1/2

T = 1000 K v

0= 0.0007 C

v0<< C

Accélération

E III - Mouvement d"une particule chargée dans un champ électrique constant

La particule de charge q et de masse m est soumise à la seule force électrique F= q E, oùEest

invariable dans l"espace et dans le temps

Le PFD s"écrit:

m d²OM/dt² = m dv/dt = F= q E

L"accélération est

q E / m ce qui s"intègre vectoriellement et donne les équations horaires v(t) = dOM/dt = (q E / m) t+ v 0 oùv

0est la vitesse initiale

de la charge.

OM(t) = (½ q E / m) t²+ v

0t + OM

0 où M

0est la position initiale

de la charge. Conclusion: le champ électrique accélère ou ralentit une charge dans son mouvement (dépend du sens de la force q Epar rapport àv 0) v0

F = qE

mouvement accéléré

F = qE

mouvement ralenti Exemple:la charge a pour coordonnées [x(t), y(t)] et pour vitesse [v x(t), v y(t)] dans le repère (xOy); en t=0, elle est au point O et possède la vitesse initiale v 0[v

0cos(α), v

0 sin(α)]

vx(t) = v

0cos(α) mouvement à vitesse constante

selon Ox v y(t) = (q E /m) t + v

0 sin(α) mouvement accéléré ou ralenti

selon Oy x(t) = v

0cos(α) t

y(t) = (½ q E / m) t² + v

0sin(α) t

équation de la trajectoire:

y = (½ q E / m) (x / v

0 cos(α))² + x tan(α)

Il s"agit d"une parabole. Si α= 0 (Eorthogonal àv

0), y = (½ q E / m v

0² ) x²

Application1 : oscilloscope à écran cathodique

Eest créé par des plaques parallèles

distantes de d, de longueur l et de différence de potentiel U x = (½ q E x/ m v

0²) l² où E

x= U x/d y = (½ q E y/ m v

0²) l² où E

y= U y/d x, y proportionnels àU x, U y

Ci contre: variété de courbes de

Lissajous obtenues en appliquant

aux plaques de déflexion x et y les tension U x= cos(p t)

Uy=sin(q t)

Pour p, q entiers (p = q donne un

cercle)

Plaques de déflexion

E x E yl l Application 2: expérience de Millikan sur la quantification de la charge mgq E V>0 E

V=0Goutte sphérique d"huile

rayon r, densitér charge q < 0 -6phr v

PFD: m dv/dt = (4/3pr

3r) g - 6phr v +q E = 0 à l"équilibre poids force de frottement force électrique

E = -Ee

z

6phr v = (4/3 pr

3 r) g + q E

v z= -(1/6phr ) (4/3 pr

3 rg+ q E)

1)

E = V/d = 0

la mesure de v zdonne le rayon r de la goutte

2) On fixe E = V/d tel que

vz= 0 q = - 4/3 pr

3 rg / E

Résultat: on trouve statistiquement que la charge q est multiple d"une même quantité, la charge de l"électron - e = - 1.6 10 -19 C v d liquide visqueux z IV - Mouvement d"une particule chargée dans un champ magnétique; pulsation gyromagnétique et rayon de giration

Le PFD s"écrit:

m dv/dt = q vLB Le produit scalaire avec vdonne d(½ m v²) /dt = 0.

L"énergie cinétique de la particule est constante. La norme ||v|| du vecteur vitesse est invariable.Supposons Binvariable dans le temps.

Considérons dérivée du produit scalaire v.Bpar rapport au temps: d(v.B)/dt = dv/dt . B= q/m (vLB) . B = 0 puisque vLB etB sont orthogonaux. On en déduit que le produit scalaire v.Best invariable dans le temps .v B vLB orthogonal au plan(v, B)

Posons:

v = v //+ v v//dans la direction du champ magnétique v┴dans le plan orthogonal au champ Conséquence pour un champ magnétique uniforme et constant v//B = constante v// = constante v² = v //² + v ┴² = constante v┴= constante Si v //= 0 alors m v ┴²/ R = q v ┴B v ┴= ΩR

Le mouvement est plan et circulaire

de rayon de courbure

R = |v

La quantitéΩ=|q B / m| porte le nom de pulsation gyromagnétique

C"est une vitesse angulaire

(unité: rd/s) de rotation dans un plan orthogonal au champ B. Si v //est non nul

Le mouvement est une hélice de rayon R

dont l"axe est la direction du champ magnétique; son pas est h = v //T = v //(2π/Ω); la vitesse de dérive sur l"axe de l"hélice est v Conclusion: les charges sont déviées et guidées par un champ magnétique. L"énergie cinétique de la particule ne varie pas. B v// v┴h

Applications: 1 - le phénomène de piégeage de charges par miroir magnétique dans la couronne solaire

A la surface du Soleil, le phénomène de miroir magnétique se produit lorsqu"une particule chargée se déplace d"une zone de champ magnétique B faible (sommet d"une arche magnétique) vers ses pieds d"ancrage où B est fort . La vitesse de dérive v //, maximale au sommet de l"arche, diminue vers ses pieds, peut s"annuler et s"inverser.

2 - séparation isotopique

par un champ magnétique

Pour q, B, v

0donnée,

R proportionnel à la masse m

(les isotopes diffèrent par le nombre de neutrons) m 1 m 2

B faible

B fortB v// = cte

R = m |v

0/ q B|

B fort

3 - la chambre à bulles en physique des particulesPFD: m dv/dt = q (vLB) - k v

Vitesse initialev

0selon Oy

Trajectoire incurvée en présence

de champ magnétique

Mouvement freiné par le fluide,

frottement - k v avec formation de bulles sur la trajectoire par vaporisation (la puissance dissipée - k v² provoque le changement d'état)

Mesure de la vitesse initiale v

0 et de la charge q q fort ou m faible (électrons)q faible ou m fort (noyaux)v0 Ω=|q B / m| (B donné) fluide

Chambre de Wilson du

laboratoire Leprince Ringuet des rayons cosmiques (gerbes de particules secondaires issues de collisions entre particules galactiques et l"atmosphère).

Col du Midi à 3600 m d"altitude

(massif du Mont Blanc) Ω=|q B / m|les trajectoires sont d"autant plus incurvées que la masse m est petite et la charge q grande à B donné

4 - cyclotron/synchrotron: accélérateur de particules

Accélération

par un champ

électrique

Déviation

par un champ magnétique

½ m v

n+1

²- ½ m v

n²= q DV

Zone de déviation par

champ magnétique

Cyclotron

B constant

Ω=q B / m constant R n= v n/Ωaugmente

Synchrotron

R = v n/Ω nconstant n= v n/R augmente B n= Ω n (m/q) augmente

Zone d"accélération

par champ électrique (tension DV) vnaugmente V - Mouvement d"une particule chargée dans un champ magnétique uniforme; équation horaire Particule de charge q et de masse m à l"origine O du repère, et de vitesse initiale v

0 contenue dans le plan

(yOz), de coordonnées (0, v

0cosα, v

0sinα). En t, la

particule est en M ( x(t), y (t), z(t) ). Le principe fondamental de la dynamique s"écrit: m dv/dt = q vLB, équation que l"on projette sur les 3 axes.

Selon Ox: m d²x/dt² = q B dy/dt (1)

Selon Oy: m d²y/dt² = - q B dx/dt (2)

Selon Oz: m d²z/dt² = 0 (3)

(3) donne la vitesse et le mouvement selon Oz: dz/dt= v

0sinα= constante, et z(t) = v

0sinαt

Le mouvement se fait à vitesse constante

(v0 sinα ) dans la direction du champ magnétique dx/dt = v

0cosαsin(ωt)

dy/dt = v0cosαcos(ωt) Les deux premières équations donnent la vitesse et le mouvement dans le plan xOy:

ω= q B / m est la pulsation gyromagnétique Dans le plan orthogonal au champ magnétique, la vitesse est constante (v0 cosα x(t) = v

0cosα(1 - cos(ωt)) / ω

quotesdbs_dbs35.pdfusesText_40