[PDF] Fonctions circulaires et applications reciproques´



Previous PDF Next PDF







TRIGONOMÉTRIE ET FONCTIONS CIRCULAIRES

les deux angles α et –α dont le cosinus vaut a On trouve les autres solutions de l'équation en ajoutant les multiples de 2π cos x = a Û x = a + 2kp ou x = –a + 2kp , k ˛ Pour sin x = a: on résout déjà l'équation sur l'intervalle [0 ; 2π] en cherchant à l'aide du cercle trigonométrique les deux angles α et π – α dont le



Fonctions circulaires et applications reciproques´

Fonctions circulaires et applications reciproques´ A Fonctions circulaires A 1 Rappels de trigonometrie´ I Les fonctions sinus, cosinus et tangente Les fonctions cosinus et sinus sont d´efinies sur R, a valeurs dans [−1,1], 2π-p´eriodiques et d´erivables sur R avec pour tout x ∈ R cos0 x = −sinx et sin0 x = cosx



Fonctions circulaires STI2D 1 Fonctions circulaires

Fonctions circulaires STI2D 4 B Equations ???? ???? ????=???? ???? ???? et ???????? ???? = ???????? ???? Propriété Les solutions dans R de l’équation ???? ???? ???? = ???? ???? ???? sont ????= ???? + ???????? ????= −???? + ???????? où k est un entier relatif Propriété



TRIGONOMÉTRIE ET FONCTIONS CIRCULAIRES

Théorème : Les fonctions sinus et cosinus sont périodiques de période 2p De plus, la fonction cosinus est paire et la fonction sinus est impaire (cos(-x) = cos x et sin(-x) = -sin x) Représentation graphique des fonctions sinus et cosinus : Les courbes ci-dessus sont appelées des sinusoïdes



Fonctions circulaires et fonctions circulaires réciproques

Fonctions circulaires Exercice 1 A partir de la formule de Moivre, retrouver les formules d’addition des fonctions circulaires suivantes : cos(a+b) = cosacosb sinasinb cos(a b) = cosacosb+sinasinb sin(a+b) = sinacosb+cosasinb sin(a b) = sinacosb cosasinb: En déduire les formules d’addition pour la fonction tan, à savoir : tan(a+b) = tana



Christophe Bertault — Mathématiques en MPSI FONCTIONS CIRCULAIRES

Définition-théorème (Fonctions sinus et cosinus, lien avec le cercle trigonométrique) Les fonctions sinus et cosinus sont définies et dérivables sur Ret 2π-périodiques La fonction cosinus est paire, la fonction sinus impaire, et : cos′ =−sin et sin′ =cos π 2 π 3π 2 2 π y=cosx b b π 2 3π 2 2π =sin x b θ b cosθ sinθ



1 Fonctions circulaires inverses - e Math

Fonctions circulaires et hyperboliques inverses Corrections de Léa Blanc-Centi 1 Fonctions circulaires inverses Exercice 1 Vérifier arcsinx+arccosx = p 2 et arctanx+arctan 1 x =sgn(x) p 2: Indication H Correction H Vidéo [000752] Exercice 2 Une statue de hauteur s est placée sur un piédestal de hauteur p 1 À quelle distance x



Les fonctions circulaires réciproques - Camille Guerin

Les fonctions circulaires réciproques 1 Technique générale Nous allons dans cet article construire et étudier les fonctions circulaires «réciproques» arc



Planche no 13 Fonctions circulaires réciproques

Planche no 13 Fonctions circulaires réciproques * très facile ** facile *** difficulté moyenne **** difficile I : Incontournable T : pour travailler et mémoriser le cours



Planche no 13 Fonctions circulaires réciproques : corrigé

∪ + = = = , = = + = + )= )= + )= , = , ,

[PDF] Les fonctions cosinus hyperbolique et sinus hyperbolique

[PDF] Les fonctions d'un groupe de mots

[PDF] les fonctions d'un médicament

[PDF] Les Fonctions d'un nombre

[PDF] Les fonctions d'un personnage caché

[PDF] Les fonctions d'une suite

[PDF] les fonctions d'une marque

[PDF] les fonctions dans la phrase exercices

[PDF] Les fonctions dans un carré

[PDF] Les fonctions de coût

[PDF] les fonctions de f(x) et les determiner graphiquemsn

[PDF] Les fonctions de l'écriture autobiographique, texte de Michel Leiris dont le titre est Gorges coupée

[PDF] les fonctions de l'administration

[PDF] les fonctions de l'ecrivain

[PDF] les fonctions de l'écrivain dans la société

Chapitre II

Fonctions circulaires et applications

r

´eciproquesA Fonctions circulaires

A.1 Rappels de trigonom

´etrie?Les fonctions sinus, cosinus et tangenteLes fonctionscosinusetsinussont d´efinies surR, `a valeurs dans [-1,1], 2π-p´eriodiques et d´erivables surRavec pour toutx?R cos ?x=-sinxet sin?x= cosx. Par ailleurs, la fonction cosinus est paire et la fonc- tion sinus est impaire. On appellefonction tangentela fonction not´ee tan d´efinie surR\?π2 +πZ?par tanx=sinxcosx Il s"agit d"une fonction impaire,π-p´eriodique, in- finiment d´erivable surR\?π2 +πZ?et qui v´erifie pour toutx?? -π2 ,π2 tan ?(x) =1cos

2x= 1 + tan2x.x

cosx sinx tanx

28Chapitre II- Fonctions circulaires et applications r´eciproques?Quelques valeurs remarquables des fonctions sinus, cosinus et tangentex0π

6π 4π 3π

22π33π45π6π

sinx01

2⎷2

2⎷3

21⎷3

2⎷2

21
20 cosx1⎷3

2⎷2

21
20- 12- ⎷2 2- ⎷3

2-1tanx01⎷31⎷3-

⎷3-1-

1⎷30

Beaucoup d"autres valeurs remarquables se retrouvent ais´ement `a partir de celles qui pr´ec`edent en

utilisant les relations entre sinus et cosinus.A.2 Variations de la fonction sinus

Puisque la fonction sinus est 2π-p´eriodique et impaire, il suffit de connaˆıtre ses variations sur l"intervalle

[0,π] pour en d´eduire les variations surR.x0π2π sin?x= cosx1 + 0- -1 sinx1 0 0 0π 2π

3π22π-π2-π-3π2-2π

-11 | | | |||||y= sinxA.3 Variations de la fonction cosinus

La fonction cosinus est 2π-p´eriodique et paire, il suffit donc de connaˆıtre ses variations sur l"intervalle

[0,π] pour en d´eduire les variations surR. x0π2π cos?x=-sinx0- -1-0 cosx 1 -1 0

A- Fonctions circulaires290π

3π22π-π2-π-3π2-2π

-11 | | | |||||y= cosxA.4 Variations de la fonction tangente

La fonction tangente estπ-p´eriodique et impaire donc il suffit donc de connaˆıtre ses variations sur

l"intervalle?0,π2 ?. Pour toutx??0,π2 ?, on a tan?x= 1 + tan2x >0 donc la fonction tangente est strictement croissante sur l"intervalle?0,π2 ?. Il faut prendre garde au fait que la fonction tangente n"est pas globalement croissante puisqu"il s"agit d"une fonction p´eriodique! x0π2 tan?x= 1 + tan2x1 + tanx+∞ 0 | | | ||||0π

4π2π

3π2-π2-π-3π21y= tanx

30Chapitre II- Fonctions circulaires et applications r´eciproquesB Fonctions r

´eciproques des fonctions circulairesB.1 La fonction arcsinus ?D´efinitionLa fonction sinus est continue surRet strictement croissante sur l"intervalle?-π2 ,π2 ?, elle r´ealise donc

une bijection de cet intervalle sur son image [-1,1] et on peut d´efinir son application r´eciproque.B.1.1 D´efinition

On appellefonction arcsinus, et on note

Arcsin : [-1,1]→?

-π2 ,π2

,x?→Arcsinx ,l"application r´eciproque de la restriction de la fonction sinus `a l"intervalle

-π2 ,π2 .B.1.2 Remarques ?Pour toutx?[-1,1], Arcsinxest la mesure d"anglecompriseentre-π2 etπ2 dont le sinus vautx.?Pour toutx?[-1,1], on a sin?Arcsinx?=x.?Pour toutθ??-π2 ,π2 ?, on a Arcsin?sinθ?=θ.

Il faut prendre garde au fait que l"expression Arcsin?sinθ?est d´efinie pour toutθ?Rmais ne vaut

exactementθque lorsqueθ??-π2 ,π2

En effet, comme on l"a pr´ecis´e ci-dessus, Arcsin?sinθ?d´esigne la mesure d"angle entre-π2

etπ2 dont le sinus vaut sinθi.e.il s"agit de l"unique r´eelθ0??-π2 ,π2 ?tel qu"il existek?Zavecθ=θ0+2kπ.

Par exemple, on a Arcsin?sin?17π8

??=π8

´Etude des variations de la fonction arcsinusLes variations de la fonction arcsinus sur l"intervalle [-1,1] sont les mˆemes que celles de la fonction

sinus sur l"intervalle? -π2 ,π2 .x-1 0 1

Arcsinx

2 -π2 0

0 1-1π

2

2y= Arcsinx

B- Fonctions r´eciproques des fonctions circulaires31

B.1.3 Proposition

La fonction arcsinus est d´erivable sur ]-1,1[ et pour toutx?]-1,1[,Arcsin?(x) =1⎷1-x2.D´emonstration

En effet, pour toutx?]-1,1[, on a

Arcsin

?(x) =1sin ?(Arcsinx)=1cos(Arcsinx).Mais Arcsinx??-π2 ,π2

?et la fonction cosinus est positive sur cet intervalle donc cos(Arcsinx)?0.Par cons´equent, on peut ´ecrire

Arcsin

?(x) =1?cos

2(Arcsinx)=1?1-sin2(Arcsinx)et la conclusion vient du fait que sin(Arcsinx) =x.B.1.4 Remarque

Le graphe de la fonction arcsinus ayant ´et´e obtenu par sym´etrie, on sait qu"il admet des tangentes

verticales pourx=-1 etx= 1 ainsi qu"une tangente de pente 1 pourx= 0. On retrouve cela avec la d´eriv´ee de Arcsin puisque

Arcsin

?(0) = 1,limx→-1+1⎷1-x2= +∞et limx→1-1⎷1-x2= +∞.B.2 La fonction arccosinus

?D´efinitionLa fonction cosinus est continue surRet strictement d´ecroissante sur l"intervalle [0,π], elle r´ealise donc

une bijection de cet intervalle sur son image [-1,1] et on peut d´efinir son application r´eciproque.B.2.1 D´efinition

On appellefonction arccosinus, et on note

Arccos : [-1,1]→[0,π],x?→Arccosx ,l"application r´eciproque de la restriction de la fonction cosinus `a l"intervalle [0,π].B.2.2 Remarques

?Pour toutx?[-1,1], Arccosxest la mesure d"anglecompriseentre 0 etπdont le cosinus vautx.?Pour toutx?[-1,1], on a cos?Arccosx?=x.

32Chapitre II- Fonctions circulaires et applications r´eciproques?Pour toutθ?[0,π], on a Arccos?cosθ?=θ.

Il faut prendre garde au fait que l"expression Arccos?cosθ?est d´efinie pour toutθ?Rmais ne vaut

exactementθque lorsqueθ?[0,π].

En effet, comme on l"a pr´ecis´e ci-dessus, Arccos?cosθ?d´esigne la mesure d"angle entre 0 etπdont

le cosinus vaut cosθi.e.il s"agit de l"unique r´eelθ0?[0,π] tel qu"il existek?Zavecθ=θ0+ 2kπ.

Par exemple, on a Arccos?cos?12π5

??=2π5

´Etude des variations de la fonction arccosinusLes variations de la fonction arccosinus sur l"intervalle [-1,1] sont les mˆemes que celles de la fonction

cosinus sur l"intervalle [0,π].x-1 0 1

Arccosx

2 -π2 0

0 1-1π

2πy= ArccosxB.2.3 Proposition

La fonction arccosinus est d´erivable sur ]-1,1[ et pour toutx?]-1,1[,Arccos?(x) =-1⎷1-x2.D´emonstration

En effet, pour toutx?]-1,1[, on a

Arccos

?(x) =1cos

?(Arccosx)=1-sin(Arccosx).Mais Arccosx?[0,π] et la fonction sinus est positive sur cet intervalle donc sin(Arccosx)?0. Parcons´equent, on peut ´ecrire

Arccos

?(x) =-1?sin

2(Arccosx)=-1?1-cos2(Arccosx)et la conclusion vient du fait que cos(Arccosx) =x.

B- Fonctions r´eciproques des fonctions circulaires33

B.2.4 Remarque

Le graphe de la fonction arccosinus ayant ´et´e obtenu par sym´etrie, on sait qu"il admet des tangentes

verticales pourx=-1 etx= 1 ainsi qu"une tangente de pente-1 pourx= 0. On retrouve cela avec la d´eriv´ee de Arccos puisque

Arccos

?(0) =-1,limx→-1+-1⎷1-x2=-∞et limx→1--1⎷1-x2=-∞.B.3 La fonction arctangente

?D´efinitionLa fonction tangente est continue et strictement croissante sur ?-π2 ,π2 ?, elle r´ealise donc une bijection

de cet intervalle sur son imageRet on peut d´efinir son application r´eciproque.B.3.1 D´efinition

On appellefonction arctangente, et on note

Arctan :R→?

-π2 ,π2

,x?→Arctanx ,l"application r´eciproque de la restriction de la fonction tangente `a l"intervalle

-π2 ,π2 .B.3.2 Remarques ?Pour toutx?R, Arctanxd´esigne donc la mesure d"anglecompriseentre-π2 etπ2 dont la tangente vautx.?Pour toutx?R, on a tan?Arctanx?=x.?Pour toutθ??-π2 ,π2 ?, on a Arctan?tanθ?=θ.

Il faut prendre garde au fait que l"expression Arctan?tanθ?est d´efinie pour toutθ?Rmais ne vaut

exactementθque lorsqueθ??-π2 ,π2

En effet, comme on l"a pr´ecis´e ci-dessus, Arctan?tanθ?=θd´esigne la mesure d"angle entre-π2

et π2 dont la tangente vaut tanθi.e.il s"agit de l"unique r´eelθ0??-π2 ,π2 ?tel qu"il existek?Zavec θ=θ0+ 2kπ. Par exemple, on a Arctan?tan?15π7 ??=π7

´Etude des variations de la fonction arctangenteLes variations de la fonction arctangente surRsont les mˆemes que celles de la fonction tangente sur

l"intervalle?-π2 ,π2 ?.x-∞0 +∞

Arctanx

2 -π2 0

34Chapitre II- Fonctions circulaires et applications r´eciproques-π20π

2y= ArctanxB.3.3 Proposition

La fonction arctangente est d´erivable surRet

pour toutx?R,Arctan?(x) =11 +x2.D´emonstration

Pour toutx?R, on a

Arctan

?(x) =1tan ?(Arctanx)=11 + tan

2(Arctanx)=11 +x2.B.3.4 Remarque

Le graphe de la fonction arctangente ayant ´et´e obtenu par sym´etrie, on sait qu"il admet une tangente

de pente 1 pourx= 0. On retrouve cela avec la d´eriv´ee de Arctan puisque Arctan ?(0) = 1.B.4 Deux relations remarquables entre les fonctions trigonom

´etriquesAu vu de l"analogie entre les graphes des fonctions arcsinus et arccosinus, il est naturel de se demander

s"il n"existe pas un lien entre ces deux fonctions. Ce lien tr`es simple est donn´e par le r´esultat suivant :B.4.1 Proposition

Pour toutx?[-1,1], on a : Arcsin(x) + Arccos(x) =π2 .D´emonstration

On propose deux d´emonstrations.

?Pour toutx?[-1,1], on posef(x) = Arcsin(x) + Arccos(x). Comme les fonctions arcsinus etarccosinus sont toutes deux d´erivables sur ]-1,1[, la fonctionfest elle-aussi d´erivable sur ]-1,1[

B- Fonctions r´eciproques des fonctions circulaires35 et on a f

?(x) = Arcsin?(x) + Arccos?(x) =1⎷1-x2+-1⎷1-x2= 0.Il s"ensuit que la fonctionfest constante sur ]-1,1[. On af(0) = Arcsin(0)+Arccos(0) = 0+π2

=π2doncf(x) =π2

pour toutx?]-1,1[.Enfin, les fonctions arcsinus et arccosinus sont toutes deux continues `a droite en-1 doncfestaussi continue `a droite en-1i.e.f(-1) = limx→-1+f(x) =π2

. De mˆeme, les fonctions arcsinus etarccosinus sont toutes deux continues `a gauche en 1 doncfest aussi continue `a gauche en 1i.e.f(1) = limx→1-f(x) =π2

. On a donc bienf(x) =π2 pour toutx?[-1,1].?Soitx?[-1,1], on noteα= Arcsin(x) etβ= Arccos(x), alors sinα= sin?Arcsin(x)?=x

cosβ= cos?Arccos(x)?=xOn a donc sinα= cosβd"o`u (c"est une formule de trigonom´etrie classique) sinα= sin?π2

-β?.La fonction arcsinus est `a valeurs dans ?-π2 ,π2 ?doncα??-π2 ,π2 ?. La fonction arccosinus est `avaleurs dans [0,π] doncβ?[0,π], d"o`uπ2 -β??-π2 ,π2 ?.Ainsi, on a sinα= sin?π2 -β?alors queαetπ2 -βsont dans l"intervalle?-π2 ,π2 ?sur lequel lafonction sinus est bijective. Par cons´equentα=π2 -βi.e.α+β=π2 .Voici une autre relation remarquable impliquant cette fois-ci la fonction arctangente.

B.4.2 Proposition

Arctan(x) + Arctan?1x

??π2 six >0 π2 six <0D´emonstration

Pour toutx >0, on posef(x) = Arctan(x)+Arctan?1x

?. La fonctionfest d´erivable sur chacun desintervalles ]- ∞,0[ et ]0,+∞[ et on a f ?(x) = Arctan?(x) + Arctan??1x -1x 2? =11 +x2+11 + 1x

2×?

-1x 2?

= 0.Il s"ensuit que la fonctionfest constantesur chacun des intervallessur lesquels elle est d´efiniei.e.il existe une constantectelle que l"on aitf(x) =cpour toutx >0 et il existe une constantedtelleque l"on aitf(x) =dpour toutx <0.On af(1) = Arctan(1) + Arctan?11

?=π4 +π4 =π2 doncf(x) =π2 pour toutx >0.D"autre part, on af(-1) = Arctan(-1) + Arctan1-1=-π4 -π4 =-π2 doncf(x) =-π2 pour toutx <0.quotesdbs_dbs46.pdfusesText_46