[PDF] VARIATIONS D’UNE FONCTION



Previous PDF Next PDF







Image des intervalles - unicefr

une fonction continue est born ee et atteint ses bornes Encore autrement dit L’image d’un intervalle [a;b] par une fonction continue est un intervalle ferm e born e [m;M] Cet enonc e ne nous etonne pas du tout, avec nos potes, vu que pour les fonctions qu’on conna^ t, ca se voit gros comme une maison sur le tableau de variations



VARIATIONS D’UNE FONCTION

Un tableau de variations résume les variations d'une fonction en faisant apparaître les intervalles où elle est monotone Exemple : On reprend la fonction f définie dans l’exemple du paragraphe 1 La fonction f est croissante sur l’intervalle [0 ; 2,5] et décroissante sur l’intervalle [2,5 ; 5] f (0) = 0 f (2,5) = 6,25 f (5) = 0



Exemple 5 fonction affine par intervalles

- utiliser les instructions (Saisir – Affecter –Afficher - Conditionnelle) ; - travailler avec un exemple de fonction définie par intervalle Commentaires L’activité peut se prolonger par une représentation graphique de la fonction Le programme peut être complété par un tableau de valeurs et/ou une courbe



Seconde - Intervalles de R - Free

On obtient donc les différents intervalles suivants : 2) Tableau récapitulatif des neufs intervalles de R Remarques préliminaires : On dit qu’un intervalle est fermé si ses extrémités lui appartiennent Par exemple :[ 6 ; 12 ] est un intervalle fermé On dit qu’un intervalle est ouvert si ses extrémités ne lui



Intervalles et inégalités - Accueil

Intervalles et inégalités Les savoir-faire 020 Utiliser la notion d’intervalles 021 Donner un encadrement ou arrondir correctement 022 Utiliser la notion d’inégalités 023 Résoudre une inéquation du premier degré 024 Modéliser un problème par une inéquation I Les intervalles



MÉTHODE des intervalles de confiance Estimation : Intervalle

des intervalles calculés avec la formule génèrent des intervalles qui contiendront μ On ne sait jamais si l’intervalle calculé avec l’échantillon observé contient μ mais notre degré de confiance est de ( 1 - α) 100 qu’il fait partie de ceux qui contienne μ ( les ‘ bons ‘ )



Tableaux de variation - courbe nde

Pour chaque question, répondre avec une phrase en précisant les intervalles a) Quel est le signe de la fonction f? b) Quels sont les extrema de la fonction g? 2 Tracer une représentation graphique de f et g sur leurs ensembles de définition x f (x) −53 11 2 5 1 −4 2 0 4 −3 −4 0 −2 3 x g(x) 2 0 2 5 4 4 0 1 −1 3 1 0 3 Exercice



Fonctions affines Exercices corrigés

x Exercice 3 : fonction affine par intervalles (par morceaux) x Exercice 4 : sens de variation d’une fonction affine x Exercice 5 : signe d’un binôme , inéquation du premier degré à une inconnue (résolution algébrique et résolution graphique) Soit la fonction affine définie, pour tout nombre réel , par



Interpolation, Polynômes de Lagrange et Splines

k et qui soit affine sur les intervalles [a;x 1] et [x n;b] Dans la suite on note dx i = x i+1 x i et dy i = y i+1 y i On va chercher à montrer dans un premier temps que la fonction s est entièrement définie par les valeurs de s a dérivée seconde aux noeuds x i On note z i =s(2)(x i) Dans un second temps on va chercher à les calculer

[PDF] les intervalles cm2

[PDF] Les intervalles de fluctuation

[PDF] Les intervalles de R

[PDF] Les intervalles de R1

[PDF] Les intervalles de R3

[PDF] les intervalles de réel

[PDF] Les intervalles et les limites d'une fonction

[PDF] les intervalles maths

[PDF] les intervalles niveau seconde

[PDF] les invasions barbares cm1 evaluation

[PDF] les invasions barbares cm1 leçon

[PDF] les inventions du 19ème siècle cm2

[PDF] les inventions du 19ème siècle et leurs inventeurs

[PDF] les inventions du 20ème siècle

[PDF] Les invitées de la guerre

1 sur 11

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

VARIATIONS D'UNE FONCTION

Tout le cours sur les variations en vidéo : https://youtu.be/i8aYSIidNlk Tout le cours sur les fonctions affines en vidéo : https://youtu.be/n5_pRx4ozIg Partie 1 : Fonctions croissantes et fonctions décroissantes

1. Définitions

On a représenté ci-dessous dans un repère la fonction définie par =5- Lorsqu'on se promène sur la courbe en allant de la gauche vers la droite :

Sur l'intervalle [0;2,5], on

monte, on dit que la fonction est croissante.

Sur l'intervalle [2,5;5], on

descend, on dit que la fonction est décroissante. est décroissante sur 2,5;5

Si augmente (3<4),

alors () diminue ((3)>(4)). est croissante sur 0;2,5

Si augmente (1<2),

alors ()augmente ((1)<(2)).

2 sur 11

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Définitions : Sur un intervalle ,

- une fonction est croissante, - une fonction est décroissante, si < alors . si < alors

Remarques :

• Pour une fonction constante : on a toujours • Dire que est monotone signifie que est soit croissante, soit décroissante. • On dit qu'une fonction croissante conserve l'ordre et qu'une fonction décroissante renverse l'ordre. Exercice : Déterminer les variations d'une fonction

Vidéo https://youtu.be/zHYaPOWi4Iw

Vidéo https://youtu.be/__KaMRG51Ts

2. Maximum et minimum

Exemple : On reprend la fonction définie dans l'exemple de la partie 1.

Sur l'intervalle [0;5], on a :

2,5 =6,25. On dit que 6,25 est le maximum de la fonction . Ce maximum est atteint en 2,5.

3 sur 11

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Définitions : Sur un intervalle ,

- une fonction admet un maximum en , si pour tout , - une fonction admet un minimum en , si pour tout ,

Remarque : Un minimum ou un maximum

s'appelle un extremum.

TP avec Python :

Approcher un extremum par la méthode du balayage

3. Tableau de variations

Un tableau de variations résume les variations d'une fonction en faisant apparaître les intervalles où elle est monotone. Méthode : Déterminer graphiquement les variations d'une fonction et dresser le tableau de variations

Vidéo https://youtu.be/yGqqoBMq8Fw

On considère la représentation graphique la fonction :

4 sur 11

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr a) Sur quel intervalle la fonction est-elle définie ? b) Donner les variations de la fonction. c) Donner les extremums de la fonction en précisant où ils sont atteints. d) Résumer les résultats précédents dans un tableau de variations.

Correction

a) La fonction est définie sur [-5;7]. b) La fonction est croissante sur les intervalles [-4;0] et [5;7]. Elle est décroissante sur les intervalles [-5;-4] et [0;5]. c) Le maximum de est 3,5. Il est atteint en =0. Le minimum de est -4. Il est atteint en =-4 . d)

Partie 2 : Cas des fonctions affines

1. Définitions

Définitions : Une fonction affine est définie sur ℝ par =+, où et sont deux nombres réels. Lorsque =0, la fonction définie par = est une fonction linéaire.

Exemples :

• Fonction affine : =-+6 • Fonction linéaire :

2. Variations

Propriété : Soit une fonction affine définie sur ℝpar

Si >0, alors est croissante.

Si <0, alors est décroissante.

Si =0, alors est constante.

Démonstration :

Soient et deux nombres réels tels que <.

On sait que < donc ->0.

Le signe de

est le même que celui de .

5 sur 11

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr - Si >0, alors > 0 soit

Donc est croissante.

- Si =0, alors = 0 soit

Donc est constante.

- Si <0, alors < 0 soit

Donc est décroissante.

Méthode : Déterminer les variations d'une fonction affine

Vidéo https://youtu.be/9x1mMKopdI0

Déterminer les variations des fonctions affines suivante : a) =3+2 b) =7-6 c) ℎ

Correction

1)

=3+2 >0 donc est croissante.

2)

=7-6=-6+7 <0 donc est décroissante.

3) ℎ

=-=-1 <0 donc ℎ est décroissante.

3. Représentation graphique

Propriétés :

- Une fonction affine est représentée par une droite. - Une fonction linéaire est représentée par une droite passant par l'origine du repère. Soit la fonction affine définie par ()=+. s'appelle le coefficient directeur s'appelle l'ordonnée à l'origine. Méthode : Déterminer graphiquement une fonction affine

Vidéo https://youtu.be/OnnrfqztpTY

Vidéo https://youtu.be/fq2sXpbdJQg

Vidéo https://youtu.be/q68CLk2CNik

Déterminer graphiquement l'expression des fonctions et représentées respectivement

par les droites (d) et (d').

6 sur 11

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Correction

Ce nombre s'appelle le coefficient directeur.

Si on avance de 1 : on monte de .

Ce nombre s'appelle l'ordonnée à l'origine.

- se lit sur l'axe des ordonnées.

Pour (d) : Le coefficient directeur est 2

L'ordonnée à l'origine est -2

L'expression de la fonction est :

=2-2

Pour (d') : Le coefficient directeur est -0,5

L'ordonnée à l'origine est -1

L'expression de la fonction est :

=-0,5-1 Propriété des accroissements : Soit la fonction affine définie sur ℝ par =+ et deux nombres réels distincts et .

Alors : =

Démonstration :

Comme ≠, et on a : =

Remarque : Dans le calcul de ,inverser et n'a pas d'importance.

En effet :

Méthode : Déterminer l'expression d'une fonction affine

Vidéo https://youtu.be/ssA9Sa3yksM

Vidéo https://youtu.be/0jX7iPWCWI4

Déterminer par calcul une expression de la fonction telle que : (-2)=4 et (3)=1.

7 sur 11

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Correction

est une fonction affine, donc elle s'écrit sous la forme : • Calcul de : On a (-2)=4 et (3)=1, donc d'après la propriété des accroissements :

Donc :

• Calcul de b :

On a par exemple : (3)=1, donc :

×3+=1

+=1 =1+ 9 5 5 5 9 5 • D'où :

Partie 3 : Cas des fonctions de référence

1. Variations de la fonction carré

Vidéo https://youtu.be/B3mM6LYdsF8

Propriété :

La fonction carré est décroissante sur l'intervalle -∞;0 et croissante sur l'intervalle

0;+∞

8 sur 11

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Démonstration au programme :

Vidéo https://youtu.be/gu2QnY8_9xk

On pose :

- Soit et deux nombres réels quelconques positifs tels que <. Or ->0, ≥0 et ≥0 donc ≥0 ce qui prouve que est croissante sur l'intervalle

0;+∞

- La décroissance sur l'intervalle -∞;0 est prouvée de manière analogue en choisissant et deux nombres réels quelconques négatifs tels que <.

2. Variations de la fonction inverse

Vidéo https://youtu.be/Vl2rlbFF22Y

Propriété :

La fonction inverse est décroissante sur

l'intervalle -∞;0 et décroissante sur l'intervalle

0;+∞

Démonstration au programme :

Vidéo https://youtu.be/cZYWnLA30q0

On pose :

- Soit et deux nombres réels strictement positifs avec <. 0 0'/ 0/ Or >0, >0 et -<0. Donc f est ainsi décroissante sur l'intervalle

0;+∞

- La décroissance sur l'intervalle -∞;0 est prouvée de manière analogue. Propriété : Si et sont deux nombres réels de même signe, on a alors : 1 1 En effet, la fonction inverse étant décroissante, l'ordre est renversé.

9 sur 11

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Méthode : Résoudre une inéquation avec la fonction inverse

Vidéo https://youtu.be/7K0171Zj5Rw

Résoudre l'inéquation suivante pour tout strictement positif : 4 +2<5

Correction

4 +2<5 4 <5-2 4 <3 1 3 4 1 4 3 4 3 4 3 ;+∞W

3. Variations de la fonction racine carrée

Vidéo https://youtu.be/qJ-Iiz8TvZ4

Propriété : La fonction racine carrée est strictement croissante sur l'intervalle

0;+∞

Démonstration au programme :

Vidéo https://youtu.be/1EUTIClDac4

On pose :

Soit et deux nombres réels positifs tels que <. 1 0 31
/4 0 3 /4 0 0 /4 0 /'0 /4 0 Or >0 et ->0. Donc >0quotesdbs_dbs46.pdfusesText_46