[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES



Previous PDF Next PDF







maths 6P 207

Découvre les suites logiques • Maths u m c d u ©2017 Effectue cette multiplication DM M C D U 5 3 x 4 9 Découvre les suites logiques et complète les trois derniers éléments: • Dessine le cochon en symétrie (= en miroir) : M C D U 2 5 7 9 u m c d u



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES I Suites arithmétiques 1) Définition Exemple : Considérons une suite numérique (u n) où la différence entre un terme et son précédent reste constante et égale à 5 Si le premier terme est égal à 3, les premiers termes successifs sont : u 0 = 3, u 1 = 8, u 2 = 13, u 3 = 18



UITES - rallymathsfreefr

4 Chapitre 9 Suites Comme pour les fonctions, on peut représenter une suite graphi-quement en portant n en abscisse et u n ordonnée On ne relie bien sûr pas les points obtenus Il existe d'autres types de repré-sentations (par exemple sur un axe) Donner, par lecture graphique, les neuf premiers termes de la suite u représentée ci



Polygone explore les math

• Connaitre les termes de position : sous, au-dessus, à droite de, etc Logique • Compléter des suites logiques (selon le niveau, suites de 2 à 6 termes) • Classifier des objets dans un tableau à une ou à deux dimensions • Coordonner les critères de classification dans un tableau à deux dimensions Mesure



Raisonnement et démonstration

Les élèves doivent connaître les notions d’élément d’un ensemble, de sous-ensemble, d’appartenance et d’inclusion, de réunion, d’intersection et de complémentaire et savoir utiliser les symboles de base correspondants: ∈, ⊂ , ∪ , ∩ ainsi que la notation des ensembles de nombres et des intervalles



Ensembles et applications - Exo7

les mathématiques sur des bases logiques Il reçut une lettre d’un tout jeune mathématicien : «J’ai bien lu votre premier livre Malheureusement vous supposez qu’il existe un ensemble qui contient tous les ensembles Un tel ensemble ne peut exister » S’ensuit une démonstration de deux lignes Tout le travail de Frege s



Logique et raisonnements - Exo7

• Il est important d’avoir un langage rigoureux La langue française est souvent ambigüe Prenons l’exemple de la conjonction « ou»; au restaurant « fromage ou dessert » signifie l’un ou l’autre mais pas les deux Par contre si dans un jeu de carte on cherche « les as ou les cœurs» alors il ne faut pas exclure l’as de cœur



TEST PRATIQUE DU TEST DE LOGIQUE MATHEMATIQUE ET VERBAL

En utilisant les informations fournies, déterminez laquelle des cinq (5) options ci-dessous est la bonne réponse EXEMPLE DE QUESTION : 1 Une machine fabrique 100 unités d'un produit par minute Si 24 unités sont emballées dans un carton, combien de cartons peuvent être remplis en une heure par la machine ? A 125 B 250 C 500 D 2,500



TANGRAM - Académie de Poitiers

Manipuler les pièces, les orienter, comparer les mesures des côtés pour les positionner en tenant compte des limites de l'espace contenant Se représenter une forme géométrique par assemblage d'autres formes Essai et tâtonnement pour résoudre les situations problèmes Validation par un accès au résultat sur papier transparent

[PDF] les suites mathématiques

[PDF] les suites maths 1ere es

[PDF] les suites maths 1ere s

[PDF] les suites maths 1ere st2s

[PDF] Les suites nuémriques

[PDF] Les Suites Numérique (convergence d'une somme)

[PDF] les suites numérique aider moi

[PDF] Les suites numériques

[PDF] Les suites numeriques

[PDF] Les suites numériques

[PDF] les suites numériques

[PDF] Les suites numériques ( problèmes )

[PDF] Les suites numériques :

[PDF] Les suites numériques DM

[PDF] les suites numériques exercices corrigés pdf mpsi

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES I. Suites arithmétiques 1) Définition Exemple : Considérons une suite numérique (un) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u0 = 3, u1 = 8, u2 = 13, u3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3. La suite est donc définie par : 0

1 3 5 nn u uu

. Définition : Une suite (un) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : 1nn

uur

. Le nombre r est appelé raison de la suite. Méthode : Démontrer si une suite est arithmétique Vidéo https://youtu.be/YCokWYcBBOk 1) La suite (un) définie par :

u n =7-9n est-elle arithmétique ? 2) La suite (vn) définie par : v n =n 2 +3 est-elle arithmétique ? 1) u n+1 -u n =7-9n+1 -7+9n=7-9n-9-7+9n=-9

. La différence entre un terme et son précédent reste constante et égale à -9. (un) est une suite arithmétique de raison -9. 2)

v n+1 -v n =n+1 2 +3-n 2 -3=n 2 +2n+1+3-n 2 -3=2n+1

. La différence entre un terme et son précédent ne reste pas constante. (vn) n'est pas une suite arithmétique. Vidéo https://youtu.be/6O0KhPMHvBA

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2Propriété : (un) est une suite arithmétique de raison r et de premier terme u0. Pour tout entier naturel n, on a :

u n =u 0 +nr

. Démonstration : La suite arithmétique (un) de raison r et de premier terme u0 vérifie la relation

u n+1 =u n +r . En calculant les premiers termes : u 1 =u 0 +r u 2 =u 1 +r=u 0 +r +r=u 0 +2r u 3 =u 2 +r=u 0 +2r +r=u 0 +3r u n =u n-1 +r=u 0 +(n-1)r +r=u 0 +nr

. Méthode : Déterminer la raison et le premier terme d'une suite arithmétique Vidéo https://youtu.be/iEuoMgBblz4 Considérons la suite arithmétique (un) tel que

u 5 =7 et u 9 =19

. 1) Déterminer la raison et le premier terme de la suite (un). 2) Exprimer un en fonction de n. 1) Les termes de la suite sont de la forme

u n =u 0 +nr

Ainsi 50

57uur=+=

et 90

919uur=+=

. On soustrayant membre à membre, on obtient :

5r-9r=7-19

donc r=3 . Comme u 0 +5r=7 , on a : u 0 +5×3=7 et donc : u 0 =-8 . 2) 0n uunr=+ soit 83 n un=-+× ou encore 38 n un=-

2) Variations Propriété : (un) est une suite arithmétique de raison r. - Si r > 0 alors la suite (un) est croissante. - Si r < 0 alors la suite (un) est décroissante. Démonstration :

u n+1 -u n =u n +r-u n =r . - Si r > 0 alors u n+1 -u n >0 et la suite (un) est croissante. - Si r < 0 alors u n+1 -u n <0 et la suite (un) est décroissante. Exemple : Vidéo https://youtu.be/R3sHNwOb02M

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr3La suite arithmétique (un) définie par

u n =5-4n

est décroissante car de raison négative et égale à -4. 3) Représentation graphique Les points de la représentation graphique d'une suite arithmétique sont alignés. Exemple : On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4. RÉSUMÉ (un) une suite arithmétique - de raison r - de premier terme u0. Exemple : r=-0,5

et u 0 =4

Définition

u n+1 =u n +r u n+1 =u n -0,5 La différence entre un terme et son précédent est égale à -0,5. Propriété u n =u 0 +nr u n =4-0,5n Variations Si r > 0 : (un) est croissante. Si r < 0 : (un) est décroissante. r=-0,5<0

La suite (un) est décroissante. Représentation graphique Remarque : Les points de la représentation graphique sont alignés.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr4II. Suites géométriques 1) Définition Exemple : Considérons une suite numérique (un) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u0 = 5, u1 = 10, u2 = 20, u3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5. La suite est donc définie par :

u 0 =5 u n+1 =2u n

Vidéo https://youtu.be/WTmdtbQpa0c Définition : Une suite (un) est une suite géométrique s'il existe un nombre q tel que pour tout entier n, on a :

u n+1 =q×u n

. Le nombre q est appelé raison de la suite. Méthode : Démontrer si une suite est géométrique Vidéo https://youtu.be/YPbEHxuMaeQ La suite (un) définie par :

u n =3×5 n est-elle géométrique ? u n+1 u n

3×5

n+1

3×5

n 5 n+1 5 n =5 n+1-n =5

. Le rapport entre un terme et son précédent reste constant et égale à 5. (un) est une suite géométrique de raison 5 et de premier terme

u 0 =3×5 0 =3

. Exemple concret : On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4%. Chaque année, le capital est multiplié par 1,04. Ce capital suit une progression géométrique de raison 1,04. On a ainsi : u

1 =1,04×500=520 u 2 =1,04×520=540,80 u 3 =1,04×540,80=562,432

De manière générale : u

n+1 =1,04×u n avec u 0 =500 On peut également exprimer un en fonction de n : u n =500×1,04 n

Propriété : (un) est une suite géométrique de raison q et de premier terme u0. Pour tout entier naturel n, on a :

u n =u 0 ×q n

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr5Démonstration : La suite géométrique (un) de raison q et de premier terme u0 vérifie la relation

u n+1 =q×u n . En calculant les premiers termes : u 1 =q×u 0 u 2 =q×u 1 =q×q×u 0 =q 2 ×u 0 u 3 =q×u 2 =q×q 2 ×u 0 =q 3 ×u 0 u n =q×u n-1 =q×q n-1 u 0 =q n ×u 0

. Méthode : Déterminer la raison et le premier terme d'une suite géométrique Vidéo https://youtu.be/wUfleWpRr10 Considérons la suite géométrique (un) tel que

u 4 =8 et u 7 =512

. Déterminer la raison et le premier terme de la suite (un). Les termes de la suite sont de la forme

u n =q n ×u 0 . Ainsi u 4 =q 4 ×u 0 =8 et u 7 =q 7 ×u 0 =512 . Ainsi : u 7quotesdbs_dbs7.pdfusesText_13