[PDF] TRIGONOMÉTRIE - Maths & tiques



Previous PDF Next PDF







CHAPITRE 8 et trigonométrie Angles orientés

21 Lignes trigonométriques d’angles associés † L’outil : – Lignes trigonométriques d’angles associés † L’objectif : – Calculer un sinus et un cosinus à l’aide des angles associés 1 a) π – 2π 5 = 3π 5; π + 2π 5 = 7π 5; π 2 – 2π 5 = π 10 b) A Q B M O P N 3π 5 + 7π 5 2π 5 π 10 c) cos 3π 5 = – cos 2π



TRIGONOMÉTRIE - Maths & tiques

4) 5) Aux points de la droite orientée d'abscisses x et x+2kπ ont fait correspondre le même point du cercle trigonométrique 3) Cosinus et sinus d'angles associés Définition : Deux angles sont dits associés s'ils admettent des cosinus et des sinus égaux ou opposés



CHAPITRE N° LIGNES TRIGONOMETRIQUES

CHAPITRE N° LIGNES TRIGONOMETRIQUES Page 1 sur 4 I) Cosinus et sinus d'un nombre 1°) Repères direct et indirect : soit (O, i j r r, ) un repère orthonormé du plan Si la mesure principale de l'angle (i j r r, ) est 2 π, alors le repère (O, i j r r, ) est orthonormé direct Si la mesure principale de l'angle (i j r r, ) est - 2 π



TRIGONOMÉTRIE - Pierre Lux

Lignes trigonométriques des angles associés Ex 15 : Même sinus, même cosinus 1 ) Parmi les angles donnés, quel est celui qui a le même cosinus que π 3 a ) −π 6 b ) 13π 3 c ) 2π 3 d ) − 4π 3 2 ) Parmi les angles donnés, quel est celui qui a le même sinus que π 6 a ) 11π 6 b ) − 7π 6 c ) 5π 3 d ) − 5π 6 Ex 16 : Valeurs



TRIGONOMÉTRIE

7 ) lignes trigonomÉtriques des angles associÉs Remarque préliminaire : Dans la pratique, on se permet souvent quelques légèretés d’écriture très utiles pour la clarté des figures et pour retenir les formules



Première 9 S Cours : produit scalaire et trigonométrie

c Les propriétés des angles de vecteurs d Définition du cosinus et du sinus d’un angle e Les formules donnant les lignes trigonométriques des arcs associés : opposés, supplémentaires, complémentaires 2 Sur le cercle trigonométrique, on considère deux points M et N tels que OA,OM → → =a et OA,ON



IE sur les angles orientés Fiche de préparation

et leurs angles associés Formules sur les lignes trigonométriques des angles associés Démonstrations à connaître : Propriétés des angles orientés Savoir-faire : Trouver la mesure principale d’un angle Placer un point sur le cercle trigo connaissant son abscisse curviligne Utiliser les propriétés des angles associés pour



Formulaire de trigonométrie circulaire

Formules d’Euler ∀x ∈ R, cosx = eix +e−ix 2 et eix +e−ix = 2cosx ∀x ∈ R, sinx = eix −e−ix 2i et eix −e−ix = 2isinx Formule de Moivre ∀x ∈ R, ∀n ∈ Z, (eix)n = einx 2 http ://www maths-france frc Jean-Louis Rouget, 2008 Tous droits réservés



Trigonométrie circulaire - unicefr

Quand on dispose d’une mesure d’un angle orienté, on peut trouver sa mesure principale de manière systématique grâce à la fonction « partie entière » (voir le chapitre « fonctions de référence ») Pour l’instant, contentons nous de « bricolages » Exercice 1 Trouver la mesure principale d’un angle de mesure 1) 71π 4, 2



TRIGONOMETRIE - EXERCICES CORRIGES

Arcs et angles orientés Exercice n° 9 Donner une mesure en radians de l'angle formé par la petite aiguille et la grande aiguille d'une montre (plusieurs réponses sont possibles) 1) à 3 h 2) à 1 h 3) à 4 h 4) à 6 h 5) à 8 h Exercice n° 10

[PDF] lignes trigonometriques de pi/12

[PDF] Lignes trigonométriques PI/12

[PDF] ligue spartakiste

[PDF] like photo facebook gratuit

[PDF] LILI MARLEEN

[PDF] Lily

[PDF] lily chanson

[PDF] Lily de Pierre Perret

[PDF] lily pierre perret analyse

[PDF] lily pierre perret brevet

[PDF] lily pierre perret commentaire

[PDF] lily pierre perret instruments

[PDF] lily pierre perret partition

[PDF] lily pierre perret questionnaire

[PDF] lily pierre perret wikipedia

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frTRIGONOMÉTRIE Il faut remonter jusqu'aux babyloniens, 2000 ans avant notre ère, pour trouver les premières traces de tables de données astronomiques. Car à la base, la trigonométrie est une géométrie appliquée à l'étude du monde, de l'univers et est indissociable de l'astronomie. Mais on attribue à Hipparque de Nicée (-190 ; -120) les premières tables trigonométriques. Elles font correspondre l'angle au centre et la longueur de la corde interceptée dans le cercle. Le grec Claude Ptolémée (90? ; 160?) poursuit dans l'Almageste les travaux d'Hipparque avec une meilleure précision et introduit les premières formules de trigonométrie. Plus tard, l'astronome et mathématicien Regiomontanus (1436 ; 1476), de son vrai nom Johann Müller (ci-contre) développe la trigonométrie comme une branche indépendante des mathématiques. Il serait à l'origine de l'usage systématique du terme sinus. Au XVIe siècle, le français François Viète (1540 ; 1607), conseiller d'Henri IV, fera évoluer la trigonométrie pour lui donner le caractère qu'on lui connaît aujourd'hui. De nos jours, la trigonométrie trouve des applications très diverses, particulièrement dans les sciences physiques. La propagation des ondes, par exemple, est transcrite par des fonctions trigonométriques. I. Radian et cercle trigonométrique 1) Le radian Définition : Soit un cercle C de centre O et de rayon 1. On appelle radian, noté rad, la mesure de l'angle au centre qui intercepte un arc de longueur 1 du cercle.

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 2) Cercle trigonométrique Définition : Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d'une montre. Définition : Dans le plan muni d'un repère orthonormé

O;i ;j

et orienté dans le sens direct, le cercle trigonométrique est le cercle de centre O et de rayon 1. 3) Enroulement d'une droite autour du cercle trigonométrique Dans un repère orthonormé

O;i ;j

, on considère le cercle trigonométrique et une droite (AC) tangente au cercle en A et orientée telle que

A;j

soit un repère de la droite. Si l'on " enroule » la droite autour du cercle, on associe à tout point N d'abscisse x de la droite orientée un unique point M du cercle. La longueur de l'arc

AM est ainsi égale à la longueur AN.

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPropriété : Un angle plein (tour complet) mesure

radians. Démonstration : La longueur du cercle trigonométrique est égale à 2π. En effet, son rayon est 1 donc P = 2πR = 2π x 1 = 2π. Or la longueur d'un arc et la mesure de l'angle qui l'intercepte sont proportionnelles. Comme 1 radian est la mesure de l'angle qui intercepte un arc de longueur 1 sur le cercle trigonométrique, on en déduit que la mesure de l'angle plein est égale à 2π radians. 4) Correspondance degrés et radians Ainsi, à 2π radians (tour complet), on fait correspondre un angle de 360°. Par proportionnalité, on obtient les correspondances suivantes : Méthode : Passer des degrés aux radians et réciproquement Vidéo https://youtu.be/-fu9bSBKM00 1) Donner la mesure en radians de l'angle α de mesure 33°. 2) Donner la mesure en degrés de l'angle β de mesure

3π 8 rad. 2π 3π 8

360° 33° ? 1)

α=33×

2π 360

11π

60
2) 3π 8 360
2π =67,5° Mesure en degrés 0 30° 45° 60° 90° 180° 360° Mesure en radians 0 6 4 3 2

π 2π

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 5) Plusieurs enroulements de la droite A plusieurs points de la droite orientée on peut faire correspondre un même point du cercle. La droite orientée peut en effet s'enrouler plusieurs fois autour du cercle. Exemples : - Ci-contre, les points N et P d'abscisses

3π 4 et 5π 4 correspondent tous les deux au point M. En effet : 3π 4 -2π=- 5π 4

- On pourrait poursuivre le processus dans l'autre sens en effectuant deux tours successifs. Ainsi, les points d'abscisses

3π 4 et

19π

4 correspondent au point M. En effet : 3π 4 +4π=

19π

4

. II. Mesure d'un angle orienté et mesure principale 1) Cas d'angles orientés de norme 1 On munit le plan d'un repère orthonormé

O;i ;j

et orienté dans le sens direct. On considère le cercle trigonométrique de centre O. Au point d'abscisse x de la droite d'enroulement, on fait correspondre le point M du cercle. Au point d'abscisse y de la droite d'enroulement, on fait correspondre le point N du cercle.

u et v sont les vecteurs de norme 1 tels que u =OM et v =ON

5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frDéfinition : Une mesure de l'angle orienté

u ;v est y - x. Propriété : On note α une mesure de l'angle orienté u ;v . Toute mesure de l'angle orienté u ;v est de la forme

α+2kπ

où k est un entier relatif. Démonstration : On fait correspondre le point M du cercle à deux points d'abscisses x et x' de la droite d'enroulement. On a :

x'=x+2k 1

où k1 est un entier relatif. On fait correspondre le point N du cercle à deux points d'abscisses y et y' de la droite d'enroulement. On a :

y'=y+2k 2 où k2 est un entier relatif. Alors y - x et y' - x' sont deux mesures de l'angle orienté u ;v . Et on a : y'-x'=y-x+2k 2 -k 1

π=y-x+2kπ

en posant k=k 2 -k 1 . 2) Cas d'angle orientés quelconques (et non nuls) Soit U et V deux vecteurs non nuls. Soit u et v deux vecteurs de norme 1 et respectivement colinéaires à U et à V . Définition : Une mesure de l'angle orienté U ;V est égale à une mesure de l'angle orienté u ;v

. 2) Mesure principale d'un angle orienté Définition : La mesure principale d'un angle orienté est la mesure, qui parmi toutes les autres, se situe dans l'intervalle

6YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frExemple : Vidéo https://youtu.be/GcjWqQnbiyE Une mesure d'un angle orienté est 5π. D'autres mesures sont : 5π - 2π ; 5π - 4π ; 5π - 6π ; ... soit : 3π ; π ; -π ; ... π est donc la mesure principale de cet angle orienté. III. Propriété des angles orientés 1) Angle nul, angle plat Propriétés : Pour tout vecteur

u non nul, on a : 1) u ;u =0 2) u ;-u

2) Relation de Chasles Propriété : Pour tous vecteurs

u v et w non nuls, on a : u ;v +v ;w =u ;w

Vidéo https://youtu.be/fp80PM6820w Vidéo https://youtu.be/Umes4aZEZO4 IV. Cosinus et sinus d'un angle 1) Définitions : Dans le plan muni d'un repère orthonormé

O;i ;j

et orienté dans le sens direct, on considère un cercle trigonométrique de centre O. Pour tout nombre réel x, considérons le point N de la droite orientée d'abscisse x.

7YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frÀ ce point, on fait correspondre un point M sur le cercle trigonométrique. On appelle H et K les pieds respectifs des perpendiculaires à l'axe des abscisses et à l'axe des ordonnées passant par M. Définitions : - Le cosinus du nombre réel x est l'abscisse de M et on note cosx. - Le sinus du nombre réel x est l'ordonnée de M et on note sinx. Valeurs remarquables des fonctions sinus et cosinus : x 0

6 4 3 2 cosx 1 3 2 2 2 1 2

0 -1 sinx

0 1 2 2 2 3 2

1 0 Soit

u et v deux vecteurs non nuls et x une mesure de l'angle u ;v . On a : cosu ;v =cosx et sinu ;v =sinx . Définitions : Le cosinus (respectivement le sinus) de l'angle orienté u ;v

est le cosinus (respectivement le sinus) d'une de ses mesures. Lire sur le cercle trigonométrique : Vidéo https://youtu.be/ECNX9hnhG9U Vidéo https://youtu.be/m6tuif8ZpFY 2) Propriétés Propriétés : Pour tout nombre réel x, on a : 1)

2)

3) cos2 x + sin2 x= 1 4)

cosx=cosx+2kπ où k entier relatif 5) sinx=sinx+2kπ

où k entier relatif Démonstrations : 1) 2) 3) Propriétés démontrées en classe de 2nde 4) 5) Aux points de la droite orientée d'abscisses x et

x+2kπ

ont fait correspondre le même point du cercle trigonométrique. 3) Cosinus et sinus d'angles associés Définition : Deux angles sont dits associés s'ils admettent des cosinus et des sinus égaux ou opposés.

8YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr Propriétés : Pour tout nombre réel x, on a : 1)

cos(-x)=cosx et sin(-x)=-sinx 2) cosπ+x =-cosx et sinπ+x =-sinx 3) cosπ-x =-cosx et sinπ-x =sinx 4) cos 2 +x =-sinx et sin 2 +x =cosx 5) cos 2 -x =sinx et sin 2 -x =cosx

Démonstrations : Par symétries, on démontre les résultats : 1) 2) 3) 4)

9YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr5) V. Equations trigonométriques 1) Equation cos x = cos a Propriété : Soit a un nombre réel. L'équation cos x = cos a a pour solutions les nombres réels

a+2kπ et -a+2kπ

où k est un nombre relatif. Démonstration : Par symétrie, on démontre qu'il existe deux points M et N du cercle dont les abscisses sont égales à cos a. Ces points sont tels que

i ;OM =a+2kπ et i ;ON =-a+2kπ avec k un nombre relatif. MN

10YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 2) Equation sin x = sin a Propriété : Soit a un nombre réel. L'équation sin x = sin a a pour solutions les nombres réels

a+2kπ et

π-a+2kπ

où k est un nombre relatif. Démonstration : Par symétrie, on démontre qu'il existe deux points M et N du cercle dont les ordonnées sont égales à sin a. Ces points sont tels que

i ;OM =a+2kπ et i ;ON =π-a+2kπ

avec k un nombre relatif. Méthode : Résoudre une équation trigonométrique Vidéo https://youtu.be/NlV2zKJtvc8 Résoudre dans

les équations suivantes : a) cosx=cos 6 b) sinx=-0,5 a) L'équation cosx=cos 6 a pour solution 6 +2kπ et 6 +2kπ où k est un entier relatif. b) sinx=-0,5 donc sinx=sin- 6 . L'équation a pour solution 6 +2kπ et 6 +2kπ= 7π 6 +2kπ

où k est un entier relatif. MNHorsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs5.pdfusesText_10