[PDF] LIMITES DES FONCTIONS (Partie 1)



Previous PDF Next PDF







Chapitre 5 Limites de fonctions

1) Limite infinie en l’infini a) Exemples Exemple 1 On considère la fonction f définie sur [0,+∞[ par : pour tout réel positif x, f(x) = √ x On s’intéresse aux valeurs prises par la fonction f pour les grandes valeurs de x Voici un tableau de valeurs x 0 4 10 100 1000 10000 100000 1000000 1020 √



LIMITES DES FONCTIONS (Partie 1)

I Limite d'une fonction à l'infini 1) Limite finie à l'infini Intuitivement : On dit que la fonction admet pour limite # en +∞ si (’) est aussi proche de # que l’on veut pourvu que ’ soit suffisamment grand Exemple : La fonction définie par (’)=2+ +, a pour limite 2 lorsque x tend vers +∞



Limite d’une fonction Lycée oued Eddahab oujda LIMITE D’UNE

3- La fonction admet-elle une limite en 1 4- Soit la fonction ᷐ዪ᷑ᣢዪ et ℎ᷐ዪ᷑ᣢዪᣜ༉ a) Remarquer que et sont confondues sur ᷕ༈,༉ᷔ et que et ℎ sont confondues sur ᷕ༉,༊ᷔ b) déterminer les limite de et de ℎ en 1 Définition :



Limites de fonctions

Les valeurs de la fonction ne permettent pas d'obtenir de limite particulière A Exercice : Approche intuitive [Solution n°1 p 29] Dans cette activité, nous allons étudier plusieurs comportements en l'infini Glisser les différentes courbes dans la catégorie qui leur correspond en fonction du comportement de la fonction en l'infini 1 - 2 - 9



Limites et continuité de fonctions

1 Propriétés dans l'ensemble des réels c) Majorant, minorant d'une partie Dé nition 1 8 (Majorant/Minorant) 1 Soit A une partie non vide de R et un réel On dit que est un majorant de A ou que majore A si 8x 2A;x 6



Chapitre 10 : Limites et continuité des fonctions

intervalles fermés) sans changer le sens global de la définition 4 Une fonction peut ne pas avoir de limite lorsque x tend vers x 0 En revanche, si la limite existe, elle est unique Exemple 1 Traduire et démontrer que lim x→2 x2 = 4 et lim x→1 1 √ x −1 = +∞ 2 Asymptotes verticales b O b b −∞ b b x b f(x) b b Asymptote



Fiche technique sur les limites - lyceedadultesfr

4 1 Fonction polynôme Théorème 1 Un polynôme a même limite en +1et 1 que son monôme du plus haut degré Si P(x) = a nxn +a n1xn 1 + +a 1x +a 0x 0 alors lim x+1 P(x) = lim x+1 a nx n et lim x1 P(x) = lim x1 a nx n 4 2 Fonction rationnelle Théorème 2 Une fonction rationnelle a même limite en +1et 1 que son monôme du plus degré de



Christophe Bertault — Mathématiques en MPSI LIMITES D UNE

• On définit de même la notion de limite à droite à partir de la fonction restreinte f D∩]a,+∞[si a est adhérent à D∩]a,+∞[ En termes de quantificateurs, remplacez simplement : a −α < x < a par : a < x < a+α Les limites à gauche/à droite ne sont jamais que des limites au sens initial du chapitre mais appliquées à des

[PDF] Limite de fonction et fonction exponentielle

[PDF] limite de fonction exponentielle

[PDF] Limite de fonctions et asymptotes

[PDF] limite de fonctions indéfinies

[PDF] limite de fontion vraie ou fausse

[PDF] Limite de la création monétaire - Compensation bancaire

[PDF] Limite de la fontcion Ln

[PDF] LIMITE DE ln

[PDF] limite de ln pdf

[PDF] limite de n

[PDF] limite de propriété cloture

[PDF] limite de q^n

[PDF] limite de référence terminale s

[PDF] limite de suite

[PDF] limite de suite géométrique

1

LIMITES DES FONCTIONS - Chapitre 1/2

Tout le cours en vidéo : https://youtu.be/YPwJyYDsmxM

Partie 1 : Limite d'une fonction à l'infini

1) Limite infinie en ∞

Définition :

On dit que la fonction admet pour limite +∞ en +∞, si ()est aussi grand que l'on veut pourvu que soit suffisamment grand. Remarque : On a une définition analogue en -∞.

Exemple :

La fonction définie par

a pour limite +∞ lorsque tend vers +∞.

On a par exemple :

100
=100 =10000 1000
=1000 =1000000 Les valeurs de la fonction deviennent aussi grandes que l'on veut dès que est suffisamment grand.

Si on prend un intervalle

quelconque, toutes les valeurs de la fonction appartiennent à cet intervalle dès que est suffisamment grand.

Définitions : - On dit que la fonction admet pour limite +∞ en +∞ si tout intervalle

, réel, contient toutes les valeurs de () dès que est suffisamment grand et on

note : lim - On dit que la fonction admet pour limite -∞ en +∞ si tout intervalle , réel, contient toutes les valeurs de () dès que est suffisamment grand et on note : lim

Remarques :

- Une fonction qui tend vers +∞ lorsque tend vers +∞ n'est pas nécessairement croissante. Par exemple : 2 - Il existe des fonctions qui ne possèdent pas de limite infinie. C'est le cas des fonctions sinusoïdales.

2) Limite finie en ∞

Définition :

On dit que la fonction admet pour limite en +∞,

si ()est aussi proche de que l'on veut, pourvu que soit suffisamment grand et on

note : lim Remarque : On a une définition analogue en -∞.

Exemple :

La fonction définie par

=2+ a pour limite 2 lorsque tend vers +∞.

On a par exemple :

100
=2+ =2,01 10000
=2+ =2,0001 Les valeurs de la fonction se resserrent autour de 2 dès que est suffisamment grand. La courbe de la fonction "se rapproche" de la droite d'équation =2 sans jamais la toucher. 3 Si on prend un intervalle ouvert quelconque contenant 2, toutes les valeurs de la fonction appartiennent à cet intervalle dès que est suffisamment grand.

Définition : Si lim

=, la droite d'équation = est appelée asymptote horizontale

à la courbe de la fonction en +∞.

Définition :

On dit que la fonction admet pour limite en +∞ si tout intervalle ouvert contenant

contient toutes les valeurs de () dès que est suffisamment grand et on note : lim Remarque : On a des définitions analogues en -∞.

3) Limites des fonctions de référence

Propriétés :

- lim =+∞, lim - lim =+∞, lim - lim =+∞, lim =+∞ (pour pair) - lim =+∞, lim =-∞ (pour impair) - lim - lim 1 =0, lim 1 =0 - lim =+∞, lim =0

Partie 2 : Limite d'une fonction en un réel A

1) Définition

Définition :

On dit que la fonction admet pour limite +∞ en ,

si () est aussi grand que l'on veut pourvu que soit suffisamment proche de .

4

Exemple :

La fonction définie par

1

3-

+1 a pour limite +∞ lorsque tend vers 3.

On a par exemple :

2,99 1

3-2,99

+1=101

2,9999

1

3-2,9999

+1=10001

Les valeurs de la fonction deviennent aussi

grandes que l'on veut dès que est suffisamment proche de 3.

La courbe de la fonction "se rapproche" de la

droite d'équation =3 sans jamais la toucher.

Si on prend un intervalle

quelconque, toutes les valeurs de la fonction appartiennent à cet intervalle dès que est suffisamment proche de 3.

Définition : Si : lim

=+∞ ou lim =-∞, la droite d'équation = est appelée asymptote verticale à la courbe de la fonction .

Définitions : - On dit que la fonction admet pour limite +∞ en si tout intervalle

, réel, contient toutes les valeurs de ()dès que est suffisamment proche de

et on note : lim - On dit que la fonction admet pour limite -∞ en si tout intervalle , réel,

contient toutes les valeurs de ()dès que est suffisamment proche de et on

note : lim 5

2) Limite à gauche, limite à droite :

Exemple :

Considérons la fonction inverse définie sur ℝ par La fonction admet des limites différentes en 0 selon que : >0 ou <0. Si >0 : Lorsque tend vers 0, () tend vers +∞ et on note : lim =+∞ou lim

On parle de limite à droite de 0

Si <0 : Lorsque tend vers 0, () tend vers -∞ et on note : lim =-∞ ou lim

On parle de limite à gauche de 0.

Méthode : Déterminer graphiquement des limites d'une fonction

Vidéo https://youtu.be/9nEJCL3s2eU

On donne ci-dessous la représentation graphique de la fonction . a) Lire graphiquement les limites en -∞, en +∞, en -4 et en 5. b) Compléter alors le tableau de variations de . -∞-425+∞ 6

Correction

a) lim =5 lim =5 La courbe de admet une asymptote horizontale d'équation =5 en -∞ et +∞. lim La courbe de admet une asymptote verticale d'équation =-4. lim =+∞ et lim La courbe de admet une asymptote verticale d'équation =5. 2)

Partie 3 : Opérations sur les limites

1) Utiliser les propriétés des opérations sur les limites

peut désigner +∞, -∞ ou un nombre réel. SOMME lim "→0 lim "→0 lim "→0 F.I.* * Forme indéterminée : On ne peut pas prévoir la limite éventuelle. -∞-425+∞ +∞+∞ +∞5

56-∞

7 PRODUIT ∞ désigne +∞ ou -∞ lim "→0 ∞ 0 lim "→0 lim "→0 F.I. On applique la règle des signes pour déterminer si le produit est +∞ ou -∞. QUOTIENT ∞ désigne +∞ ou -∞ lim "→0 ≠0 0 lim "→0 ′≠0

0 ∞ ∞

0 lim "→0 ∞ 0 ∞

F.I. F.I.

On applique la règle des signes pour déterminer si le quotient est +∞ ou -∞. Méthode : Calculer la limite d'une fonction à l'aide des formules d'opération

Vidéo https://youtu.be/at6pFx-Umfs

Déterminer les limites suivantes : a)lim

-5

3+

b) lim

1-2

-3

Correction

a) lim -5

3+

L lim -5=-∞ lim =+∞lim

3+

Comme limite d'un produit : lim

-5

3+

b) lim

1-2

-3 lim

1-2=1-2×3=-5

lim -3=0

Une limite de la forme "

» est égale à " ∞ ».

Donc, d'après la règle des signes, une limite de la forme "

» est égale à " +∞ ».

D'où, comme limite d'un quotient : lim

1-2

-3 8

2) Cas des formes indéterminée

Comme pour les suites, on rappelle que :

Les quatre formes indéterminées sont, par abus d'écriture : ∞-∞0×∞ Méthode : Lever une forme indéterminée à l'aide de factorisations (1)

Vidéo https://youtu.be/4NQbGdXThrk

Calculer : lim

-3 +2 -6+1

Correction

lim -3 +2 -6+1=? • L lim -3 lim

2

On reconnait une forme indéterminée du type "∞-∞". • Levons l'indétermination en factorisant par le monôme de plus haut degré : -3 +2 -6+1= R-3+ 2 6 1 S •lim 2 =lim 6 2 =lim 1 3 =0.

Donc, par limite d'une somme :

lim -3+ 2 6 1 =-3 •U lim -3+ 2 6 1 =-3 lim

Donc, par limite d'un produit :

lim R-3+ 2 6 1

S=-∞

Soit : lim

-3 +2 -6+1=-∞. Méthode : Lever une forme indéterminée à l'aide de factorisations (2)

Vidéo https://youtu.be/8tAVa4itblc

Vidéo https://youtu.be/pmWPfsQaRWI

9

Calculer : a) lim

2

2 -5+1

6

2 -5 b) lim

3

2 +2

4-1

Correction

a) • En appliquant la méthode précédente pour le numérateur et le dénominateur cela

conduirait à une forme indéterminée du type " • Levons l'indétermination en factorisant par les monômes de plus haut degré :

2

-5+1

6

-5 2- 1 6- 2- 1 6- • lim 5 =lim 1 2 =lim 5 2 =0.

Donc, comme limite de sommes :

lim 2- 5 1 =2etlim 6- 5 =6 • Donc, comme limite d'un quotient : lim 2- 1 6- 2 6 1 3

Soit : lim

2

2 -5+1

6

2 -5 1 b) • Il s'agit d'une forme indéterminée du type " • Levons l'indétermination en factorisant par les monômes de plus haut degré :

3

+2

4-1

3+ 4- 1 3+ 4- 1 • lim 1 =lim 2 2 =0

Donc, comme limite de sommes :

lim 3+ 2 =3etlim 4- 1 =4 • Donc, comme limite d'un quotient : lim 3+ 4- 1 3 4 • De plus, lim =-∞, donc, comme limite d'un produit : lim 3+ 4- 1

Soit : lim

3

quotesdbs_dbs47.pdfusesText_47