[PDF] CHAPITRE I TRIGONOMETRIE - LMRL



Previous PDF Next PDF







FRANÇAIS Livre de l’élève

Français 1ere Année Secondaire Livre de l’élève 3 Texte : Jour de rentrée Dans toutes les rues des villes, sur tous les chemins ou les pistes, de la forêt ou de la



LIVRES DES CLASSES DE PREMIERE ANNEE SCOLAIRE 2020-2021

E P S ESPAGNOL LVB + LVC Hispamundo Les livres scolaires ISBN 9782377601615 Strada facendo Italien 1ere/term LVB Manuel de l'élève Le Robert ISBN 9782321015413 NEERLANDAIS FRANCAIS Français 1ère, Langue et méthodes Robert ed 2019 ISBN 9782321014577 Via Latina Option LCA et spécialité LLCA 1ère HACHETTE Ed 2020 ISBN 9782013236256



Livre de français 1ère AS

l'économie de certains objectifs s'il s'avère que les apprenants sont déjà dotés de certains savoir-faire Il s'agit donc de délimiter les objectifs, de décider sur quoi va se centrer l'action didactique, de décider quelles activités (ou quels exercices) seront à privilégier



Français 1re - Livre du professeur - Sommaire

Les programmes officiels Le chapitre du manuel, pp 144-225 (ES/S et Techno), pp 146-227 (L/ES/S) Contenus et savoirs • Faire découvrir des œuvres théâtrales qui renouvellent les formes classiques étudiées en seconde, mais aussi sensibiliser les élèves à l’art de la mise en scène • Prenant appui sur une programmation au au



Les Contemplations livre 1 à 4 - ac-strasbourgfr

Les Contemplations, livre 1 à 4 • Parcours: Les Mémoires d’une âme Proposition d’Alice Faye, Lycée René Cassin, Strasbourg Adaptation d’une séquence sur Pauca Meae menée avec une classe



e c o and 2 & 1 é R scolaires s r p a e i l l e u rles interdite

s m e i l l e u r établissements scolaires s *Jeu gratuit sans obligation d’achat Réglement et conditions de participation sur www cours-legendre de Cours • Méthode • Exercices • Corrigés Grand jeu concours 300 BD à gagner * Seconde & Première mon année Français 2de & 1re Français rédigé par des professeurs de l



Point de grammaire : l’expression de la négation

5 Il s’agit d’un « ne » explétif, qui s’emploie seul sans autre adverbe de négation ; il n’a pas un vrai sens négatif : le locuteur craint qu’un songe l’abuse (le trompe) réellement C’est un tour élégant, dont l’apparition est entraînée par la présence du verbe « craindre »



BBAT LP 1re 2005 1AT LP 1re 2005 1 22/08/05 10:56:10/08/05 10

Les chapitres du livre du professeur présentent : – le rappel des objectifs du programme, des contenus, des connaissances et savoir-faire exigibles, les exemples d’activités et les commentaires publiés



CHAPITRE I TRIGONOMETRIE - LMRL

II e C,D – math I – Trigonométrie - 3 - • Ainsi l’ensemble des nombres x k 2+ ⋅π (où k∈ℤ) caractérise le point M et donc également l’ angle IOM De plus si x 0,2∈ π[ ] alors x est égal à la longueur de l’arc IM donc t

[PDF] livre français 4ème année primaire tunisie

[PDF] livre français 4ème année primaire tunisie pdf

[PDF] livre français seconde magnard 2011

[PDF] livre Gadji

[PDF] livre gado physique

[PDF] livre géographie seconde magnard corrigé

[PDF] livre géographie seconde magnard pdf

[PDF] livre géographie terminale s belin

[PDF] Livre GERMINAL de EMILE ZOLA

[PDF] livre gestion des ressources humaines pdf

[PDF] livre guillaume musso pdf

[PDF] livre heroic fantasy pdf

[PDF] livre histoire du maroc pdf

[PDF] livre histoire geo 4eme magnard en ligne

[PDF] livre histoire géographie 3ème magnard programme 2012 corrigé

IIe C,D - math I - Trigonométrie

- 1 -

CHAPITRE I

TRIGONOMETRIE

1) Le cercle trigonométrique

· Un cercle trigonométrique est un cercle C de rayon 1 qui est orienté, ce qui veut dire qu"on

a choisi un sens positif (celui des ronds-points) et un sens négatif (celui des aiguilles d"une montre) · Soit C un cercle trigonométrique de centre O et I, J deux points de C tel que ()O,OI,OJ??? ??? est un R.O.N. du plan. Alors les axes OI et OJ subdivisent le cercle en quatre quadrants notés : (I), (II), (III) et (IV) : C C

IIe C,D - math I - Trigonométrie

- 2 - · Soit (T) la tangente à C en I munie du repère ()I,OJ???, xÎ? et ()X(x) TÎ :

En " enroulant » (T) autour de C à partir du point fixe commun I (vers " le haut » dans le sens

positif, vers " le bas » dans le sens négatif), on voit qu"à tout réel x on peut associer un point

unique MÎC. Nous noterons ()f x M= cette correspondance.

En remarquant que le périmètre de C vaut

p 2= p puisque son rayon vaut 1, on a : ()()()()()f f f f fp = = = = = =... ( ) ( ) ( ) ( )f f f f f2p ()()()()()f f f f f L= = = = = =... ()()()()()f 0 f f f f= = = = = =...

Et de manière générale :

()x k f x k 2 f(x)" Î " Î + × p =? ?

En effet, ajouter

k 2× p à x revient à faire k tours complets à partir de ()f x M= dans un sens ou dans l"autre (selon le signe de k) pour retomber sur le même point M que x ! C

IIe C,D - math I - Trigonométrie

- 3 -

· Ainsi l"ensemble des nombres x k 2+ × p (où kÎ?) caractérise le point M et donc également

l"angle ?IOM. De plus si []x 0,2Î p alors x est égal à la longueur de l"arc ?IM donc tout nombre de la forme x k 2+ × p est une mesure de la longueur de l"arc ?IM à un multiple entier de

2p près ! Ceci nous amène à poser la définition suivante :

Définition

Les nombres x k 2+ × p (où kÎ?) sont les mesures en radians (rd) de l"angle ?IOM et aussi de l"arc ?IM. Ainsi : ??mesIOM mesIM x 2k rd= = + p

· Exemples :

?( )mesIOJ k 2 k2 p= + × p Î? ?( )mesIOK k 2 k= p+ × p Î? ?( )3mesIOL k 2 k 2 p= + × p Î?

· Chaque angle a donc

- une infinité de mesures, mais la différence entre deux mesures est toujours un multiple entier de

2p si on mesure en rd, un multiple entier de 360 si on mesure en degrés.,

- une seule mesure comprise entre 0 rd et 2p rd : c"est la plus petite mesure positive. - une seule mesure comprise entre -p rd et p rd : c"est la mesure principale. · Correspondance entre degrés et radians : rd 180p = °.

Les transformations se font par une

règle de trois :

180 rd

1 rd180

x x rd180 ?°= p?p?° =? ?×p?° =? ? respectivement : rd 180

1801 rd

x 180x rd ?p = °?°?=?p? p?

Exemples :

0 0 rd°=, 30 rd6

p°=, 45 rd4 p° =, 60 rd3 p°=, 90 rd2 p°=.

IIe C,D - math I - Trigonométrie

- 4 -2) Fonctions trigonométriques a) Fonctions sinus et cosinus

· Définitions

Soit x et f(x) MÎ = Î?C (voir 1)), alors:

o l"abscisse de M dans le repère ()O,OI,OJ??? ??? est appelée cosinus de x (ou cosinus de l"angle ?IOM) et est notée cos x. o l"ordonnée de M dans le repère ()O,OI,OJ??? ??? est appelée sinus de x (ou sinus de l"angle ?IOM) et est notée sin x. Ainsi dans le repère ()O,OI,OJ??? ??? on a M(cos x, sin x), c"est-à-dire

OM cosx OI sinx OJ= × + ×????? ??? ???

· Propriétés immédiates

o Les fonctions sin x et cos x existent pour tout réel x, donc sin cosD D= =? o x 1 sinx 1 et 1 cosx 1" Î - £ £ - £ £?

Ceci est évident puisque le rayon de C vaut 1.

o ( )( )sinx 0 x k k et cosx 0 x k k2p= Û = ×p Î = Û = + ×p Î? ?

En effet d"après la figure ci-dessus :

sin x 0 M I ou M K x 0, ,2 ,3 , , , 2 , 3 , x k k= Û = = Û Î p p p -p - p - p

Û = ×p Î

IIe C,D - math I - Trigonométrie

- 5 - cosx 0 M J ou M L x , , 2 , 3 , , , 2 ,2 2 2 2 2 2 x k k 2 p p p p p p??Û Î +p + p + p -p - p???? pÛ = + ×p Î o Le signe de cos x et de sin x dépend du quadrant dans lequel se trouve M : sinx 0 M I II 0 2k x 2k sinx 0 M III IV 2k x 2 2k cosx 0 M I IV 2k x 2k2 2 3 cosx 0 M II III 2k x 2k2 2

³ Û Î È Û + p£ £ p+ p

£ Û Î È Û p+ p £ £ p+ p

p p³ Û Î È Û - + p£ £ + p p p£ Û Î È Û + p £ £ + p o ()()x k sin x 2k sinx et cos x 2k cosx" Î " Î + p = + p =? ?

Ceci découle immédiatement du fait que

()f x k 2 f(x)+ × p = et on exprime cette propriété en disant que les fonctions sinus et cosinus sont périodiques de période 2p.

Remarque

Soit ABC un triangle rectangle en A et x la mesure de l"angle ?ABC. En classe de 4e vous avez défini cosx et sin x par : côté adjacent BAcosxhypothénuseBC= = et côté opposé ACsin xhypothénuseBC= =. Montrons que ces définitions, valables uniquement pour 0 x2 p< <, sont compatibles avec

celles, plus générales, que nous venons de voir en utilisant le cercle trigonométrique. Pour

cela nous allons distinguer deux cas :

1er cas : BC 1=

Alors le cercle C de centre B passant par C est un cercle trigonométrique et en choisissant convenablement le R.O.N. d"origine B on a : cosx AB= et sinx AC= :

Et comme

BC 1= on a bien BAcosx BABC= = et

ACsinx ACBC= =.

C

IIe C,D - math I - Trigonométrie

- 6 -

2e cas : BC 1¹

Prenons par exemple BC 1> (le cas BC 1< étant

analogue) et notons C" le point de []BC tel que

BC" 1= et A" le point de []BA tel que

()BA"C"D est rectangle en A". Comme AC A"C"? on a d"après le théorème de Thalès :

BA BC AC

BA" BC" A"C"= =.

Or

BA BC BA BA"

BA" BC" BC BC"= Û = et comme BA"cosxBC"= d"après le 1er cas appliqué au triangle ()BA"C"D, on a bien BAcosxBC=. On montre de même que ACsinxBC=.

· Valeurs remaquables

Vous avez montré en classe de 4e que 1sin cos6 3 2 p p= =, que 3sin cos3 6 2 p p= = et que

2sin cos4 4 2

p p= =. Or ()f(0) I 1,0= donc cos0 1et sin0 0= = et ( )f J 0,12p ( )=( )( ) donc sin 1et cos 02 2 p p= =. D"où le tableau des valeurs remarquables suivant : x (rd) 0 6 p 4 p 3 p 2 p sinx 0 1 2 2 2 3 2 1 cosx 1 3 2 2 2 1 2 0 b) Fonctions tangente et cotangente

· Définitions

A partir des fonctions trigonométriques principales cosx et sinx, on définit les fonctions tangente (notée tan x) et cotangente notée cot x) par : sin x cosxtanx et cotxcosx sinx= =

IIe C,D - math I - Trigonométrie

- 7 -

· C.E. pour tan x: cosx 0 x k2

p¹ Û ¹ + p, donc tanD \ k /k2p? ?= + p Î? ?? ?? ? C.E. pour cot x: sin x 0 x k¹ Û ¹ p, donc {}cotD \ k / k= p Î? ?

Interprétation géométrique:

Soient (T) la tangente à C au point I et (T") la tangente à C au point J, ()E T OMÎ Ç et ()E" T" OMÎ Ç :

Montrons que :

()()E 1,tan x et E" cotx,1 dans le cas où ()M IÎ (voir figure), les autres cas étant analogues. Dans ()OIED : MM" sinx=, OM" cosx=, OI 1= et MM" EI?. D"après le théorème de

Thalès on a :

OM" MM"

OI EI= donc cosx sinx EI sinx

1 1 cosxEI tanxEI= Û ==Û.

Dans ()OJE"D : OM"" sinx=, M""M cosx=, OJ 1= et MM"" E"J?. D"après le théorème de Thalès on a :

OM"" M""M

OJ E"J= donc sinx cosx E"J cosx

1 1 sin xE"J cotxE"J= Û ==Û.

Justification géométrique des domaines de tan x et cot x :

Si ( )x2

pº p, alors ()OM TÇ = AE donc E n"existe pas et si ()x 0º p, alors ()OM T"Ç = AE donc E" n"existe pas !

IIe C,D - math I - Trigonométrie

- 8 -

· Remarques

o Pour sinx 0¹ et cosx 0¹ on a : 1cotxtanx=, ce qui explique pourquoi la touche " cot » ne figure pas sur les calculatrices ! o tableau des valeurs remarquables : x (rd) 0 6 p 4 p 3 p 2 p tan x 0 1 3

33= 1 3

cotx 3 1 1 3 33= 0

3) FORMULES

a) Formule fondamentale et ses transformées

···· Avec les notations utilisées aux paragraphes précédents, ()M cosx,sin x et ()M" cosx,0,

on peut appliquer le théorème de Pythagore au triangle ()OM"MD rectangle en M" :

2 2 22 22OM" MM" OM cosx sin x 1 1+ = Û + = =

···· Simplification des notations : Au lieu d"écrire n n nsinx , cosx , tanx, on peut écrire : n n nsin x,cos x, tan x. ···· Avec ces notations simplifiées la relation fondamentale s"écrit :

2 2x cos x sin x 1" Î + =?

···· Pour x \ k2p

? ?Î + p? ?? ?? on a : o 2 2 2 2

2 2 2sin x cos x sin x 11 tan x 1cos x cos x cos x

o 2 2

2 21 11 tan x cos x

cos x 1 tan x+ = Û =+ o 2 2 2 2

2 2 21 1 tan x 1 tan xsin x 1 cos x 11 tan x 1 tan x 1 tan x

D" où :

2 2 2 2

2 2 21 tan x 1x \ k cos x sin x 1 tan x2 1 tan x 1 tan x cos x

p? ?" Î + p = = + =? ?+ +? ??

IIe C,D - math I - Trigonométrie

- 9 -b) ()()()sin x ,cos x , tan xp- p- p-

···· Soient xÎ?, ()M cosx,sin x et ()()()M" cos x ,sin xp- p-, alors M et M" sont

symétriques par rapport à l"axe OJ donc ils ont la même ordonnée et des abscisses

opposées, en d"autres termes : ()()x sin x sin x cos x cosx" Î p- = p- = -?

··· Pour tout

tanx DÎ on a : ( )() sin xsinx cos x costan x tanxxp-= =p-= --p-quotesdbs_dbs4.pdfusesText_7