[PDF] Terminale S - Loi uniforme Loi exponentielle



Previous PDF Next PDF







La loi exponentielle ou loi sans mémoire

suit une loi sans vieillissement, c'est-à-dire une loi exponentielle de paramètre λ , appelé constante radioactive (en s−1) et qui caractérise un radionucléide En effet, soit N 0 le nombre de noyaux radioactifs tous identiques initialement présents dans l'échantillon Au bout d'un temps t, la population de noyaux a diminué



loi exponentielle et non vieillissement - coursmathsaix

Sachant qu'une ampoule sans défaut a déjà fonctionné pendant 7 000 heures, calculer la probabilité 200 h jusqu'à atteindre 600 h de fonctionnement La loi de non vieillissement va nous amener à repartir "de zérott à partir de 400 h, et donc il restera C, on est dans le cadre d'une probabilité condltlonnelle C'



Terminale S - Loi uniforme Loi exponentielle

D’où le nom de « loi de durée de vie sans vieillissement » donné quelquefois à la loi exponentielle Exemple : La durée de vie d’un ordinateur portable expr imée en années est une variable aléatoire ???? suivant la loi exponentielle de paramètre ????= 0,125



Loi de durée de vie sans vieillissement Exemple préliminaire

T suit une loi de durée de vie sans vieillissement si la probabilité que l’individu soit en vie à l’instant t + h sachant qu’il est en vie à l’instant t ne dépend pas de t On montre et on admet que : • Soit T une v a suivant une loi de durée de vie sans vieillissement, alors, il existe un réel > 0



Loi exponentielle TS - Les MathémaToqués

exponentielle, alors sa loi est sans vieillissement (on dit aussi sans usure ou sans mémoire) ce qui signifie que (voir [1]) pour tous réels positifs t et h , on a P T ⩾ t ( T ⩾ t + h )= P ( T ⩾ h )



LOI EXPONENTIELLE

Si X est une variable aléatoire qui suit la loi exponentielle , alors on a : pX⩾t(X> t+ h)=p(X> h) Lycée Victor Hugo M CHAPON Parmi les lois de probabilité à densité, plusieurs sont couramment utilisées dans les phénomènes courants Parmi elles, la loi exponentielle modélise les durées de vie d'un phénomène dits sans vieillissement



Probabilités Loi exponentielle Exercices corrigés

Remarque importante : Une loi exponentielle de paramètre est également appelée loi de durée de vie sans vieillissement La variable aléatoire continue suit une loi exponentielle de paramètre sur l’intervalle Ainsi, la fonction densité de probabilité est définie sur par



cours loi exponentielle TS - mathsbdpfr

vieillissement suivent une loi exponentielle Ainsi, la loi exponentielle caractérise les processus sans mémoire Démonstration exigible sur l’espérance Propriété : L’espérance mathématique d’une variable aléatoire X qui suit une loi exponentielle de paramètre λ est R = 1 Démonstration exigible : ? = lim →BC ˜ "× ’



LOIS À DENSITÉ (Partie 1)

3) Durée de vie sans vieillissement Propriété : Soit X une variable aléatoire qui suit une loi exponentielle de paramètreλ Alors, pour tout réel t et h positifs, on a :

[PDF] loi exponentielle terminale s

[PDF] loi exponentielle trouver lambda

[PDF] loi falloux

[PDF] loi ferry 1882

[PDF] loi ferry 1886

[PDF] loi fondamentale de la dynamique

[PDF] loi géométrique

[PDF] loi géométrique exercices corrigés

[PDF] loi géométrique tronquée

[PDF] loi géométrique tronquée définition

[PDF] loi géométrique tronquée démonstration

[PDF] loi géométrique tronquée espérance

[PDF] loi géométrique tronquée exercice corrigé

[PDF] loi goblet

[PDF] loi haby 1975 mixité

Loi uniforme. Loi exponentielle

I) Loi uniforme de probabilité sur [a : b]

La loi de probabilité qui admet

pour densité la fonction ࢌ constante

égale à

sur [ࢇ ; ࢈], est appelée loi uniforme sur [ࢇ ; ࢈]

Soit [ࢉ ; ࢊ] un intervalle inclus dans [ࢇ ; ࢈] et ࢄ une variable aléatoire

suivant la loi uniforme sur [ࢇ ; ࢈], alors : ࡼ ( ࢉ ൑ࢄ ൑ࢊ )= ׬

Propriétés :

Si ܺ est une loi de probabilité suivant une loi uniforme sur l'intervalle [ܾ ;ܽ signifie que ܺ sur [ܾ ; ܽ L'espérance mathématique d'une variable aléatoire

ܾ ; ܽ] est ܧ(ܺ

Exemples :

1) Dans une ville (idéale) les autobus passent à chaque arrêt exactement toutes les

20 minutes. On appelle ܺ

ܺsur l'intervalle [0 ; 20], on a

donc : ( 5 ൑ܺ et ܲ( ܺ ൒12 )= ܲ ( 12 ൑ܺ enfin le temps d'attente moyen qui est égal à ܧܺ soit 10 minutes. 2) La fonction " alea » d'une calculatrice affiche au hasard un nombre réel appartenant à ]0 ; 1[. Soit ܺ le nombre affiché, ܺ une loi uniforme sur ]0 ; 1[. On a donc : ( 0,15 ൑ܺ = 0,25 et ܲ( ܺ ൒0,8 ) = ܲ ( 0,8 ൑ܺ =0,2

Remarque :

Si

ܺ suit une loi uniforme sur [ܾ ;ܽ

répartition de ܺ

Pour tout ݔג

ܨ (ݔ)=ܲ( ܺ ൑ݔ )= 0 si ݔ ൑ܽ si ܽ൑ݔ൑ܾ

1 si ݔ ൒ܾ

II) Loi exponentielle

1) Définition

Soit un réel strictement positif. Une variable aléatoire ࢄ suit une loi exponentielle de paramètre lorsque sa densité de probabilité est la fonction ࢌ la fonction définie sur [ 0 ; + [ par :

Remarque :

On peut vérifier que ݂ est bien une densité de probabilité sur [0 ; + [ en effet :

ł݂ est continue et positive sur [0 ; + [

= 1 - ݁ donc lim

݂(ݔ)݀ݔ=1

Ce qui signifie que l'aire sous la courbe de

݂ sur [0 ; + [ est égale à 1

Résultats :

Soit ܺ une variable aléatoire suivant la loi exponentielle de paramètre , et ܽ et ܾ deux réels positifs ou nuls ,alors on a: = 1 - ݁

ܽ ) = 1 - ܲ ( ܽ ܺ

Exemples :

Exemple 1 : La durée de vie d'un ordinateur portable exprimée en années est une variable aléatoire ܺ suivant la loi exponentielle de paramètre ߣ La probabilité que la durée de vie de cet ordinateur portable dépasse 5 ans est ( ܺ ൒5)=1െ ׬ ൎ0,535 La probabilité que la durée de vie de cet ordinateur portable soit inférieure à 3 ans est ܲ( ܺ ൑3)= ׬ =1െ݁ ൎ0,313 Exemple 2 : Le temps d'attente exprimé en minutes au guichet d'une banque est une variable aléatoire T suivant la loi exponentielle de paramètre ߣ probabilité qu'un client attende moins de 8 minutes est égale à 0,7. a) Calculer une valeur approchée à 0,0001 de ߣ = 0,7

De là ݁

ൎ0,1505 b) Calculer la probabilité qu'un client attende entre 15 et 20 minutes ൎ0,055

2) Propriétés

a) Espérance mathématique d'une loi exponentielle

Soit ܺ

> 0 ),alors :

Démonstration :

La fonction ܩ

a pour dérivée ܩ (ݐ)= t݁ d'où = lim

0= lim

Comme on sait que lim

=0 et que lim =0 on a ܧ(ܺ Remarque : E(ܺ) représente la valeur moyenne de la variable aléatoire de ܺ

Exemple :

Si ܺ est une variable aléatoire suivant une loi exponentielle de paramètre ߣ sa valeur moyenne soit égale à 20, alors on peut écrire que =20 d'où ߣ b) Probabilité conditionnelle

Démonstration :

Soit ܺ une variable aléatoire suivant une loi exponentielle de paramètre ߣ et ܽ deux réels strictement positifs. On cherche la probabilité que ܺ supérieure ou égale à ܽ + ݐ sachant que ܺ est supérieure à ܽ

D'où

D'où le nom de " loi de durée de vie sans vieillissement » donné quelquefois à la loi exponentielle.

Exemple :

La durée de vie d'un ordinateur portable exprimée en années est une variable aléatoire ܺ suivant la loi exponentielle de paramètre ߣ La probabilité que la durée de vie de cet ordinateur portable dépasse 5 ans sachant qu'il fonctionne depuis déjà 2 ans est égale à ( ܺ ൒5 )= ܲ( ܺ ൎ0,687 c) Fonction de répartition Si ࢄ est une variable aléatoire suivant une loi exponentielle de paramètre

ࣅ, on définit la fonction ࡲ appelée fonction de répartition de ࢄ de la façon

suivante :

Pour tout

0 si ࢞൑૙

si ࢞൒ 0quotesdbs_dbs7.pdfusesText_13