[PDF] PUISSANCES ET RACINES CARRÉES



Previous PDF Next PDF







PUISSANCES ET RACINES CARRÉES

6 sur 7 Yvan Monka – Académie de Strasbourg – www maths-et-tiques 4) Simplifier les écritures contenant des racines carrées Méthode : Simplifier une écriture contenant des racines carrées



Chapitre 7 : Racines carrées - LMRL

4 Racine carrée d’une puissance ( )( ) n a n a a∗ n + ∀ ∈ ∀ ∈ =R Z Démonstration: Posons : n b a= C’est un réel positif et ( ) 2 2 2 n n n b a a a an ⋅ = = = = Par définition b est donc la racine carrée de an, c -à-d n a a= n CQFD Simplifions maintenant n a an = , pour un réel a≥0 Exposant pair 2 a a a= =2 4



Racines carrées (cours de troisième)

On préfère écrire une racine sous la forme a b où a et b sont des entiers avec b le plus petit possible : 200 = 100 × 2 = 100 × 2 = 10 2 × 2 = 10 2 L’intérêt de modifier ainsi l’écriture des racines est, par exemple, de pouvoir simplifier des expressions numériques contenant des racines et des sommes



Memento racines carrées - Bibmathnet

On appelle racine carrée d'un nombre a (avec a ≥ 0), le nombre b (avec b ≥ 0) tel que b 2 = a Ainsi , 3 est la racine carrée de 9 parce que 32 = 9 La racine carrée du nombre a se note a Le a se nomme radicande , et le symbole a pour nom radical



2 Règles de calculs - ac-nancy-metzfr

La racine carrée de a est le nombre positif dont le carré est a La racine carré de a se note On a Remarques : 1 La racine carrée d'un nombre négatif n'existe pas 2 Le signe est appelé radical 3 Priorité des opérations : Quand on écrit , on sous-entend les parenthèses 2 Règles de calculs 2 1 Racine carré d'un produit



RACINES CARREES EXERCICE 1C

Mathsenligne net RACINES CARREES EXERCICE 1C E XERCICE 1 : Retrouver toutes les solutions de ces équations : a x2 5 donc x = 5 ou x = – 5 b 2 3 c x2 16 d 2 0 e x2 1 f 2 2 EXERCICE 2 c : Résoudre les équations suivantes :



Fonction Racine carrée - Meilleur en Maths

Fonction Racine carrée Exercices Fiche 1 Exercice 1: Résoudre les équations suivantes: a x >2 b x < 4 c x –5 < 2 d 3–x > 1 e 3 x + 1 ≥2 Exercice 2: Exprimer sans racine carrée au dénominateur a 1 2–3 b 1– 3 1 3 c 2– x x 3 d 2 x 1–1 Exercice 3: Soit f la fonction définie sur ℝ par f x = x2 2x 5



LE THÉORÈME DE PYTHAGORE (Partie 1)

On appelle racine carrée de + le nombre dont le carré est égal à + On le note √+ Méthode : Calculer la racine carrée d’un nombre Dans chaque cas, trouver un nombre qui vérifie l’égalité : 1) )*=81 2) *=5,5225 3) 0*=14 1) )*=81 donc x = √81 = 9 2) *=5,5225 donc y = 25,5225 = 2,35 3) 0*=14



Comment écrire des formules avec OpenOfficeorg Math

Racine carrée sqrt x sqrt x Autres racines nroot 5 x nroot 5 x Fractions over 3 6 = 1 2 3 over 6 = 1 over 2 unités nitalic 35 m 35 nitalic m unités (alternative)" "35 m 35 "m" Note : Les guillemets sont utilisés pour insérer un texte dans une formule Puisque Math suppose

[PDF] Mathematique racine carré 3e

[PDF] mathématique rattrapage seconde equations suivantes

[PDF] Mathématique Résoudre Merci

[PDF] Mathematique Resoudre une equation

[PDF] mathématique secondaire 1 résolution de problème

[PDF] Mathematique Seconde

[PDF] mathematique seconde exercice corrige

[PDF] Mathématique seconde fonction

[PDF] Mathématique Seconde Générale lycée Raynouard

[PDF] Mathématique Seconde lycée

[PDF] mathematique sixieme merci

[PDF] mathematique Soit f la fonction définie

[PDF] Mathematique Sscience Physique La resistance

[PDF] Mathématique suite géo

[PDF] Mathématique suite géométrique

1 sur 9

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

FRACTIONS, PUISSANCES, RACINES CARRÉES

Tout le cours sur les fractions en vidéo : https://youtu.be/a0Qb812W75c Tout le cours sur les puissances en vidéo : https://youtu.be/XA-JkXirNz4 Tout le cours sur les racines carrées en vidéo : https://youtu.be/8Atxa6iMVsw

Partie 1 : Fractions

1. Calcul avec les fractions (Rappels)

Propriétés :

Méthode : Effectuer des calculs de fractions

Vidéo https://youtu.be/1yV5scwCwvg

5 4 6 16 5 3 6 5 2 -3 -5 11 3 4 -5 8 8 7 4 7 5 3

Correction

5×4

4×4

5×5

3×5

6×3

5×3

2×(-5)

(-3)×11 &3 25
15 18 15 '$3 '&3 20+6 16 $3 8 13 8 8 7 4 7 5 3 8 7 20 21

2 sur 9

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr 24
21
20 21
4 21

2. Réduire des expressions au même dénominateur

Propriété :

9 9< 9<=;: Méthode : Réduire au même dénominateur

Vidéo https://youtu.be/Id_udNTKsqI

Réduire les expressions suivantes au même dénominateur : 7 -2 5 3 =3+

5

2+1

Correction

7 -2 5 3

7×3

-2 ×3 5 -2 3 -2 21-5
-2 3 -2

21-5+10

3 -2

31-5

3 -2 =3+

5

2+1

3 1

5

2+1

3

2+1

12+1)

5

2+1

3

2+1

+5

2+1

6+3+5

2+1

11+3

2+1

3 sur 9

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Partie 2 : Puissances

1. Rappels

De façon générale :

fois est un nombre non nul et est un entier non nul. =1 0 =0 1 =1

2. Attention aux signes !

Ne pas confondre :

-3 et : -3 =-3×3×3×3=-81

Exercice :

Calculer de même en appliquant la règle des signes : -5 ;-1 -1 ;-3 -2 ;-7 -9 ;-9

Réponses : 25;-1;1;-27;4;-49;1;-1

3. Opérations sur les puissances

Avec et entiers relatifs :

1 1

Exemples :

2 =2×2×2 11 =11×11×11×11×11

Exemples :

15 =15 103
=1 0 =0 1 =1

4 sur 9

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Méthode : Effectuer des calculs sur les puissances

Vidéo https://youtu.be/FBmVDGvUtJ4

Vidéo https://youtu.be/cY6xdxT7kLM

Exprimer sous la forme d'une seule puissance :

1 4 =4 ×4 5 5 =7 7 =6 ×9

Correction

=4 ×4 =7 3 7 2 6 =6 ×9 =4 =4 =5 =7 ×7

6×9

=4 =5 =7 ×7 =54 =7 =7 Méthode : Appliquer les formules sur les puissances de 10

Vidéo https://youtu.be/GWz5_veC12U

Vidéo https://youtu.be/EL4dBiBbL-U

a) Écrire sous la forme 10 ou 10 =10

×10

10 10 10 =10 10 b) Écrire en notation scientifique : =4×7×10

×10

)1

7×10

×5×10

1

56×10

)2

32×10

+6×10

2×10

Correction

a) )=4×7×10

×10

)1

7×10

×5×10

1

56×10

)2

32×10

+6×10

2×10

=28×10 )+)1

7×5

56
10

×10

1 10 )2

0,0032+0,006

2×10

=10

×10

=10 =10 10 10 =10 =10 )2 10 =10 =10 =10 10 =10

×10

=10

×10

=10 =10 =10

5 sur 9

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr =28×10 =0,625× 10 10 )2

0,0092

2×10

=2,8×10 =0,625×10

0,0092

2 1 10 =6,25×10 =0,0046×10 =4,6×10

Partie 3 : Racines carrées

1. Définition

Exemples :

• 3 =9 donc 9 =3 • 2,6 =6,76 donc

6,76 =2,6

2 ≈1,4142

3≈1,732

2 et

3 s'écrivent avec un nombre infini de décimales, on les appelle des nombres

irrationnels.

Définition :

La racine carrée de est le nombre (toujours positif) dont le carré est .

Racines de carrés parfaits :

0=0 25=5

100=10

1=1 36=6

121=11

4=2 49=7

144=12

9=3 64=8

169=13

16=4 81=9

Remarque :

-5 =? La racine carrée de -5 est le nombre dont le carré est -5 !

Un nombre au carré est toujours positif (règle des signes), donc la racine carrée d'un nombre

négatif est impossible. -5 n'existe pas !

2. Propriétés sur les racines carrées

Propriétés : et sont des nombres positifs. 9 9 (≠0) F G

6 sur 9

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr + et

Démonstration au programme :

Vidéo https://youtu.be/gzp16wnchaU

• F G =F G ×F G • F ×G =× car a et b sont positifs

Donc F

G =F ×G et donc

Démonstration au programme :

Vidéo https://youtu.be/fkE5KngvcCA

On a par exemple :

• F G =F G +2 +F G =++2 • F +G

Donc F

G >F +G car 2 >0

Et donc

Méthode : Effectuer des calculs sur les racines carrées

Vidéo https://youtu.be/CrTjK3Qa72s

Écrire le plus simplement possible :

32×

2 =

27 =

36×

3 !3 8& = !4 5% $3 (3

Correction

32×

2=

32×2=

64=8
3× 27=

3×27=

81=9

36×

3 =

3×3×

36=

36=3×6=18

49=7
!3 8& !3 8& = !4 5%quotesdbs_dbs47.pdfusesText_47