[PDF] Cours de mathématiques fondamentales 1 année, DUT GEA



Previous PDF Next PDF







Cours de mathématiques fondamentales 1 année, DUT GEA

Beaucoup de problèmes concrets, notamment en terme de gestion peuvent se traduire en problèmes mathématiques C’est ce que l’on appelle la mise en équation On dispose alors de toute une batterie d’outils et de techniques mathématiques pour résoudre ce pro-blème Dans ce cours, on commencera par revoir quelques techniques de calcul



DUT - Gustave Eiffel University

Mathématiques pour la gestion et statistiques - 1206 - Marketing - 1207 - Aide à la réussite gestion quantitative - SEMESTRE 2 - DUT G E A UE1 S2 - Environnement des organisations - Approfondissement 2101-Expression Communication, information et argumentation - 2102 - Langue vivante 1 Anglais - Les éléments ci-dessous sont à choix :



Gestion des entreprises et des administrations (GEA)

mathématiques, ) et de méthodes de gestion Objectifs de la formation L’objectif de ce DUT est de former des gestionnaires susceptibles de comprendre les données de l’environnement, de maîtriser les techniques et systèmes de gestion (achats, finance, gestion des SI, logistique, marketing, production ) Ils seront en



Zooms Mathématiques appliquées à la gestion

Outils mathématiques pour l’économie et la gestion Chapitre 1 • La notion d’équilibre sur le marché pour un bien 21 1 – L’analyse du marché 21 A Le problème posé 21 B La fonction d’offre – La fonction de demande 21 C La fonction d’offre affine 22 D La fonction de demande affine 23



Stage : ADMINISTRATIONS (GEA) DUT GESTION DES ENTREPRISES ET

· M1205- Mathématiques pour la Gestion et Statistiques · M1206-Marketing · M1207-Adaptation aux Publics Etudiants et Aide à la Réussite Semestre 2 DUT GEA - Enseignements Semestre 2 DUT GEA (Obligatoire) · UE1- Environnement des Organisations- Approfondissement - Environnement des Organisations - Approfondissement (Obligatoire)



DUT GESTION DES ENTREPRISES ET DES ADMINISTRATIONS

la Gestion des Entreprises), • Diplômes de Comptabilité et de Gestion (DCG), • Ecoles Supérieures de Commerce et de Gestion, > > www iut-amiens DUT GESTION DES ENTREPRISES ET DES ADMINISTRATIONS Les Formations de demain Le département G E A de l’IUT d’Amiens est un diplôme universitaire de niveau Bac +2 ouvert aux bacheliers





Gestion des entreprises et des administrations (GEA)

mathématiques ) et de méthodes de gestion Objectifs de la formation L’objectif de ce DUT est de former des gestionnaires susceptibles de comprendre les données de l’environnement, de maîtriser les techniques et systèmes de gestion (achats, finance, gestion des SI, logistique, marketing, production ) Ils seront en

[PDF] mathématiques pour la physique dunod pdf

[PDF] mathématiques pour la physique et les physiciens pdf

[PDF] mathématiques pour la physique pdf

[PDF] mathématiques pour les sciences de l'ingénieur pdf

[PDF] Mathématiques pour vendredi

[PDF] mathématiques première stmg collection sigma corrigé

[PDF] mathématiques première stmg hachette éducation corrigé

[PDF] Mathematiques premières ,taux d'evolution et coefficient multiplicateur

[PDF] mathématiques probabilités troisième

[PDF] mathématiques problème

[PDF] mathématiques probléme !!! 5EME

[PDF] mathematiques probleme a resoudre

[PDF] Mathématiques probléme fractions

[PDF] mathematiques probleme ouvert

[PDF] Mathématiques Problème PGCD

Cours de mathématiques fondamentales

1 ◦année, DUT GEA

Mourad Abouzaïd

9 décembre 2008

2

Table des matièresIntroduction7

0 Rappels d"algèbre élémentaire9

0.1 Calcul algébrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

0.1.1 Développer, factoriser . . . . . . . . . . . . . . . . . . . . . . . . .. 9

0.1.2 Identités remarquables . . . . . . . . . . . . . . . . . . . . . . . . .10

0.2 Manipulation des puissances . . . . . . . . . . . . . . . . . . . . . . .. . . 10

0.2.1 Règles de calcul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

0.2.2 Racines carrées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

0.3 Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

0.3.1 Multiplication et division de fractions . . . . . . . . . . .. . . . . . 11

0.3.2 Simplification d"une fraction . . . . . . . . . . . . . . . . . . . .. . 12

0.3.3 Addition de fractions . . . . . . . . . . . . . . . . . . . . . . . . . . 12

0.4 Fractions algébriques . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 13

1 Systèmes linéaires, programmation linéaires 15

1.1 Mise en équation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Équations linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16

1.3 Systèmes d"équations linéaires . . . . . . . . . . . . . . . . . . . .. . . . . 17

1.4 Les systèmes2×2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Résolution graphique . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.2 Méthode par substitution . . . . . . . . . . . . . . . . . . . . . . . 18

1.4.3 Méthode par combinaison . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.4 Représentation matricielle . . . . . . . . . . . . . . . . . . . . . .. 19

1.4.5 Les différents types de solutions . . . . . . . . . . . . . . . . . .. . 20

1.4.6 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Le Pivot de Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.1 Objectif du pivot de Gauss . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.2 Opérations autorisées . . . . . . . . . . . . . . . . . . . . . . . . . .23

1.5.3 Mécanisme du pivot de Gauss . . . . . . . . . . . . . . . . . . . . . 23

1.5.4 Les différents types de solutions . . . . . . . . . . . . . . . . . .. . 25

1.6 Inéquations linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 26

1.7 Systèmes d"inéquations linéaires . . . . . . . . . . . . . . . . . .. . . . . . 26

3

4TABLE DES MATIÈRES

1.8 Programmation linéaire . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 27

1.8.1 Une méthode graphique . . . . . . . . . . . . . . . . . . . . . . . . 27

1.8.2 La méthode du simplexe . . . . . . . . . . . . . . . . . . . . . . . . 32

1.8.3 Le simplexe en dimension supérieure . . . . . . . . . . . . . . .. . 37

1.8.4 Dualité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Étude d"une fonction d"une variable réelle 41

2.1 Rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1.2 Représentation graphique . . . . . . . . . . . . . . . . . . . . . . . 41

2.1.3 Sens de variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Variations d"une fonction . . . . . . . . . . . . . . . . . . . . . . . . .. . . 43

2.2.1 Taux d"accroissement . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.2 Dérivée . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.3 Étude de fonctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Coût total, coût moyen, coût marginal . . . . . . . . . . . . . . . .. . . . 47

2.3.1 Coût total . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.2 Coût moyen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.3 Coût marginal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.4 Étude qualitative des différents types de coûts . . . . . .. . . . . . 48

2.4 Élasticité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.2 Interprétation de l"élasticité . . . . . . . . . . . . . . . . . .. . . . 54

2.4.3 Calcul de l"élasticité . . . . . . . . . . . . . . . . . . . . . . . . . .55

2.4.4 Élasticité et opérations . . . . . . . . . . . . . . . . . . . . . . . .. 55

2.4.5 Élasticités croisées . . . . . . . . . . . . . . . . . . . . . . . . . . .56

3 Suites57

3.1 Définition d"une suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 57

3.1.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.2 Définition explicite . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.3 Suites récurrentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.4 Variations d"une suite . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Suites arithmétiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 59

3.2.1 Forme récurrente . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.2 Forme explicite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.3 Variations d"une suite arithmétique . . . . . . . . . . . . . .. . . . 60

3.2.4 Représentation graphique . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Suites géométriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 61

3.3.1 Forme récurrente . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.2 Forme explicite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.3 Variations d"une suite géométrique . . . . . . . . . . . . . . .. . . 62

3.3.4 Représentation graphique . . . . . . . . . . . . . . . . . . . . . . . 63

TABLE DES MATIÈRES5

4 Fonctions exponentielles et logarithmes65

4.1 Les fonctions exponentielles . . . . . . . . . . . . . . . . . . . . . .. . . . 65

4.1.1 Définitions et exemples . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.2 Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.3 Deux fonctions exponentielles particulières . . . . . .. . . . . . . . 67

4.2 Les fonctions logarithmes . . . . . . . . . . . . . . . . . . . . . . . . .. . . 68

4.2.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.2 Représentation graphique . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.3 Le logarithme népérien . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.4 Changement de base d"exponentielle . . . . . . . . . . . . . . .. . 69

4.3 Dérivée des fonctions exponentielles et logarithmes . .. . . . . . . . . . . 70

6TABLE DES MATIÈRES

Introduction

Beaucoup de problèmes concrets, notamment en terme de gestion peuvent se traduire en problèmes mathématiques. C"est ce que l"on appelle la mise en équation. On dispose alors de toute une batterie d"outils et de techniques mathématiques pour résoudre ce pro- blème. Dans ce cours, on commencera par revoir quelques techniques de calcul de base, indispensable à n"importe quelle étude mathématique. On verra ensuite trois outils parti- culiers, et quelques applications : - les systèmes linéaires, que l"on appliquera à la progression linéaire (un problème d"optimisation),

- les fonctions d"une variable réelle (continuité, dérivée, fonctions usuelles), que l"on

appliquera à des problèmes d"analyse marginale et d"élasticité.

- les suites arithmétiques et géométriques que l"on appliquera à du calcul d"intérêts.

7

8TABLE DES MATIÈRES

0 Rappels d"algèbre élémentaire0.1 Calcul algébrique

Faire du calcul algébrique, c"est utiliser toutes les règles que l"on vient de voir, en utili-

sant, soit des chiffres, soit des lettres, soit (bien souvent...) les deux. Les lettres représentent

alors des inconnues, ou des paramètres, et doivent être traités comme des chiffres (dont on ne connaît pas la valeur).

0.1.1 Développer, factoriser

Factoriser une expression, c"est transformer une somme en produit. Pour cela, il faut commencer par trouver un facteur commun àtousles termes de la somme que l"on veut factoriser. Ainsi, a

×b+a×c=a×(b+c).

Exemples:

1.6x+ 3y= 3

×2x+ 3y= 3(2x+y).

2.3(x-1)

-(x+ 2)(x-1)= (x-1)(3-(x+ 2)) = (x-1)(-x+ 1). Développer une expression, c"est transformer un produit ensomme (c"est l"opération inverse de la factorisation). Ainsi : a×(b+c) =a×b+a×c.

Et de façon plus générale :

(a+b)×(c+d) =ac+ad+bc+bd.

Exemples:

1.3(2x-1) = 6x-3.

2.5[1-2(1-a)] = 5-10(1-a) = 5-10 + 10a= 10a-5.

3.(x-1)(x-2) =x2-2x-x+ 2 =x2-3x+ 2.

4.(x-3)(x+ 3) =x2+ 3x-3x-9 =x2-9.

9

10TABLE DES MATIÈRES

0.1.2 Identités remarquables

Pour rendre les calculs plus rapide, il existe certaines identités qui doivent être connues : les identités remarquables. (Notons que si on ne les connaîtpas, on peut les retrouver à l"aide des règles de calcul que l"on vient de voir... ). Ellessont au nombre de trois :

1.(a+b)2=a2+ 2ab+b2

2.(a-b)2=a2-2ab+b2

3.(a+b)(a-b)=a2-b2

ATTENTION

on voit bien ici qu"en particulier (a+b)2?=a2+b2

Exemples:

1.(x+ 5)2=x2+ 10x+ 25,4x2+ 12x+ 9 = (2x+ 3)2.

2.(4x-y)2= 16x2-8xy+y2, x2-14x+ 49 = (x-7)2.

3.(2-3x)(2 + 3x) = 4-9x2, x2-1 = (x-1)(x+ 1),

(3x-1)2-9 = (3x-1-3)(3x-1 + 3) = (3x-4)(3x+ 2). Si l"on veut développer des expressions du type(a+b)npour un entiernplus grand que

2, on pourra utiliser ces identités remarquable, et le fait que(a+b)n= (a+b)×(a+b)n-1.

Exemples:

1.(a+b)3= (a+b)(a+b)2= (a+b)(a2+ 2ab+b2) =a3+ 3a2b+ 3ab2=b3.

2.(x-1)4= (x-1)2(x-1)2= (x2-2x+1)(x2-2x+1) =...=x4-4x3+6x2-4x+1.

Remarque: il existe une formule générale pour développer les expressions du type (a+b)nappelé binôme de Newton, qui fait notamment intervenir lescoefficients binomiaux.

0.2 Manipulation des puissances

La puissance (ou l"exposant) est une notation. Ainsi, siaest un nombre etnun entier, a nest le produit deapar lui mêmenfois. a n=a×a×...×a? nfois.

0.2.1 Règles de calcul

Soientaetbdes nombres réels et soientmetndes entiers.

0.3. FRACTION11

am×an=am+n(a×b)m=am×bm am an=am-n ?a b? m=ambm

En particulier,1a=a-1En particulier,?1a?

mquotesdbs_dbs2.pdfusesText_2