[PDF] Racine carr e - Exercices corrig s - académie de Caen



Previous PDF Next PDF







RACINES CARREES (Partie 1) - Maths & tiques

4) Racines carrées d’un nombre au carré Exemples : = = 3 = = 5 = = 9 Pour un nombre positif a, = a La racine « annule » le carré Exercices conseillés En devoir p66 n°34 II Opération sur les racines carrées 1) Exemples a b 9 16 3 4 7 -1 12 0,75 5 Imp 12 0,75 25 4 5 2 7 3 10 2,5 ≈5,4 ≈4,6 10 2,5



Racines carrées (cours de troisième)

A partir de la définition, nous allons obtenir les trois règles suivantes : Si b est un nombre positif, alors b2 = b Si b est un nombre négatif, alors b2 = -b Démonstration : Par définition on a : b2 = d avec d ≥ 0 et d2 = b2 Comme d2 = b2, on a alors d = b ou d = -b (voir cours sur les équations)



Racine carr e - Exercices corrig s - académie de Caen

Simplifier les écritures suivantes : C = 96 + 2 6 - 2 24 - 3 54 D = 2 32 - 3 50 + 6 8 A = 2 20 - 45 + 125 B = 7 3 - 3 48 + 5 12 Correction : A = 2 20 - 45 + 125 Simplifions les différentes racines de cette expression Nous avons :



DM Mathématiques Troisième Chapitre : Racines carrée et

DM Mathématiques Troisième Chapitre : Racines carrée et puissances DM : Racines carrées Exercice 1 : Expression conjuguée Par définition, l’expression conjuguée d’un terme de la forme – , et celui de – de telle sorte que leur produit fasse –



RACINES CARREES I Introduction - ac-rouenfr

a) Construis deux carrés dont la longueur d’un côté est 1 dm b) Partage ces deux carrés, puis les coller, de telle manière à obtenir un carré dont l’aire vaut 2 dm² 5) a) On note c la longueur en dm d’un côté du carré construit



Racines carrées – Nombres réels I Quelques rappels

b Règles de calcul sur les radicaux : Pour tous les nombres positifs a et b, on a : a×b = a×b Pour tous les nombres positifs a et b, avec b ≠ 0, on a : a b = a b Autrement dit : La racine carrée du produit de deux nombres positifs est le produit des racines carrées de ces nombres Exemple : 42= 93= 4 9 36 6 et 4 9 2 3 6= ===



CoursdeMathématiques–Seconde Ordreetvaleurabsolue

On sait donc comparer les carrés, les racines carrées et les inverses de nombres positifs, comment faire dans le cas de nombres négatifs? Comme souvent en Mathématiques, on se ramène à ce que l’on sait faire,c’est-à-direàdesnombres positifs en multipliant par−1 Exemples Soitxxx2+1



Astuces pour les ceintures de CM en 4e

On utilise pour cela les racines de carrés parfaits Exemple : encadrer √ On sait que 55 est entre les carrés parfaits 49 =7² et 64 = 8² donc 7



Cours de mathématiques Partie I – Les fondements

On notera qu’en général, une somme n’est pas forcément prise sur un ensemble d’entiers successifs, ni même sur un ensemble d’entiers La seule condition est que l’ensemble des indices soit fini (on étudiera le cas où l’ensemble des indices est Ndans le chapitre sur les séries) Note Historique 1 1 6 Le signe P

[PDF] maths dm trajet

[PDF] MATHS DM URGENT

[PDF] MATHS DM URGENT

[PDF] Maths du niveau quatrième

[PDF] maths ecriture scientifique help

[PDF] maths ecs exercices corrigés

[PDF] Maths effectifs

[PDF] Maths égalité de 2 carrés

[PDF] Maths éma tiques

[PDF] Maths en alld, j´arrive pas ? traduire

[PDF] maths en allemand

[PDF] maths en anglais collège

[PDF] maths en anglais traduction

[PDF] maths en anglais vocabulaire

[PDF] maths en cap

Exercice 1:

Simplifier les écritures suivantes :

8 6 + 50 3 - 32 2 = D 54 3 - 24 2 - 6 2 + 96 = C 12 5 + 48 3 - 3 7 = B 125 + 45 - 20 2 = A

Correction :

? 125 45 - 20 2 A+= Simplifions les différentes racines de cette expression.

Nous avons :

5 2 5 2 5 4 5 4 20=´=´=´=

5 3 5 3 5 9 5 9 45=´=´=´=

5 5 5 5 5 25 5 25 125=´=´=´=

Remplaçons, dans l"expression A, ces racines carrées par leurs écritures simplifiées.

Nous avons :

A =

55 5 3 52 2+-´

A =

55 5 3 54+-= ( 4 - 3 + 5 ) 5 = 65 A = 5 6

Remarque : Une autre rédaction est souhaitée. Au lieu de simplifier séparément les différentes racines,

nous pouvons, dans l"expression A, les simplifier simultanément. ? B = 125 48 3 37+-

Nous avons successivement :

B =

3 45 12 4 3 37´+´-

B =

3 45 12 4 3 37´+´-

B =

3 2 5 12 2 3 37´´+´´-

B =

310 12 6 37+-

B =

12 6 317-

Nous devons continuer et simplifier

12 B =

34 6 317´-= 32 6 317´´-= 312 317- = 35

La simplification de 48 a été exécutée en deux étapes. La rédaction pouvait être plus rapide en

constatant que 48 =

3 16´. Nous obtenons alors :

B =

3 4 5 3 163 37´+´-

B =

3 4 5 3 163 37´+´-

B =

3 2 5 3 4 3 37´´+´´-

THEME :

RACINE CARREE

EXERCICES CORRIGES

Les carrés parfaits : ( sauf 1 )

4 , 9 , 16 , 25 , 36 , 49 , 64 , 81 , 100 , ...

et la racine carrée de ces carrés parfaits :

4 = 2 , 9 = 316 = 4 ,25 = 5 ,

36 = 6 , 49 = 7 , ...

B = 310 312 37+-= 35 B = 35

? C = 54324262 96--+

Essayons de déterminer dans chaque radicande ( nombre situé sous le radical ) le carré parfait le plus

grand possible. C =

6 936 4262 6 16´-´-+´

C =

6 936 4262 6 16´-´-+´

C = 63 362 262 64´-´-+

C = 696462 64--+= 67- C = 67-

? D = 86503322+-

D = 2 462 2532 162´+´-´

2 462 2532 162´+´-´

D = 2 2 62 5 32 4 2´´+´´-´´

D = 2122 152 8+- = 25 D = 25

Exercice 2:

Simplifier les expressions suivantes :

) 1 - 2 )( 1 + 2 2 ( - ) 1 - 2 3 ( = E) 5 - 3 ( - ) 5 + 3 ( = D ) 2 - 3 )( 2 + 6 ( = C) 5 + 2 )( 5 - 2 2 ( = B ) 2 - 2 )( 1 - 2 ( = A

222

Correction :

? ) 2 - 2 )( 1 - 2 ( A=

2 1 2 1 - 2 2 - 2 2 A´+´´´= =

2 2 - ² 2( - 22 A+=) mais ² 2() = 2

A =

2 2 - 2 - 22+

23 4 - A+= 23 4 - A+=

? ) 5 2 )( 5 - 22 ( B+=

B 55 - 2 5 - 522 2 22 ´´´+´=

B )²5( - 2 5 - 522 )²22( ´´+= Sachant que ² 2() = 2 , que )²5( = 5 et que 52´= 2 5´= 10 , nous avons : B =

5 - 10 - 102 2 2 +´ 5 - 10 - 102 4 += = 10 1-+ 10 1 - B+=

? ) 2 - 3 )( 2 6 ( C+=

2 2- 3 2 2 6 - 3 6 C´´+´´=

22- 3 2 2 6 - 3 6 C+´´=

22- 3 2 12 - 18 C+=

Simplifions maintenant 18 et 12. Nous avons :

22- 3 2 3 4 - 2 9 C+´´=

22- 3 2 3 4 -2 9 C+´´=

22- 3 2 32 -23 C+== 2 2 C=

Remarque : Il existait ici une autre façon de simplifier cette expression. ) 2 - 3 )( 2 6 ( C+=

Le premier facteur

2 6+ peut s"écrire ( en factorisant ) :

2 6+ = )²2( 3 2+´ = 2 2 3 2´+´ = ) 2 3( 2+´

) 2 - 3 )( 2 6 ( C+== ) 2 - 3 )( 2 3( 2+= )²] 2( )²3[( 2- C =

2] - [3 2 = 2 1 2=´

? )² 5 3 ( - )² 5 3 ( D-+= )²] 5(53 2 )² 3 [( - )²] 5(53 2 )² 3 [( D+´´-+´´+= ] 553 2 3 [ - ] 5 53 2 3 [ D+-++=

En écrivant

53 sous la forme 15 et en supprimant les parenthèses, nous obtenons :

515 2 3 - 5 15 2 3 D-+++= = 15 215 2+= 15 4 15 4 D=

? ) 1 2 )( 1 22 ( - 1)²2 (3 E-+-= ) 1 2 2 2- )²22( ( - 1²] 1 2 3 2)²2 [(3 E-++´´-= ) 1 2 2 2- 2 2 ( - ] 1 2 6)²2 3²( [ E-+´+-= ) 1 2 2 2- 4 ( - 1] 2 62 9 [ E-++-´= ou ) 2 3 ( - ] 2 6[19 E--=

1 2 2 2 4 - 1 2 618 E+-++-= ou 2 3 - 2 619 E+-=

2 516 E-=

Exercice 3:

On donne les nombres :

3 5 2 b et 3 - 5 2 a+==

Calculer a + b , a - b , a² + b² , ab et ( a + b )²

Correction :

? Calcul de a + b : Remplaçons a et b par les valeurs données ci-dessus.

Attention, toute valeur doit être considérée comme une valeur entre parenthèses ( Il est vrai que si

cette valeur est simple, les parenthèses sont omises ) Si a = 2 , il faut lire a = ( 2 ) ( ici les parenthèses sont inutiles )

Si a = - 3 , il faut lire a = ( - 3 )

Si a =

5, il faut lire a = (5 )

Si a =

23 -, il faut lire a = (23 - )

Si a =

352-, il faut lire a = (352- )

a + b = ) 352 ( ) 352 (++- a + b =

352 352++- = 54 a + b = 54

? Calcul de a - b : a - b = ) 352 ( ) 352 (+-- a - b =

352 352--- = - 6 a - b = - 6

? Calcul de a² + b²: a² + b² = )² 352 ( )² 352 (++- a² + b² = ] 3² 512 )² 5(2 [ ] 3² 512 )² 5(2 [++++- ) 1 2 2 2- 4 ( - 1] 2 618 [ E-++-=

2 516 E-=

a² + b² = ] 9 512 )² 52²( [ ] 9 512 )² 52²( [++++- a² + b² = ] 9 512 54 [ ] 9 512 54 [++´++-´ a² + b² = ] 9 512 20 [ ] 9 512 20 [++++- a² + b² = ]512 29 [ ]512 29 [++- = 512 29 512 29++- = 58 a² + b² =

9 512 20 9 512 20++++- = 20 + 9 + 20 + 9 = 58

a² + b² = 58 ? Calcul de ab : ab = ) 352 )( 352 ( b a+-=´ ab = 3² )²52 (- = 3² )²52²(- = 9 5 4-´= 20 - 9 = 11 ab = 11 ? Calcul de ( a + b )² : ( a + b )² = )]² 352 ( ) 352 [(++- ( a + b )² = ]² 352 352 [++- ( a + b )² = ]² 54 [ ( a + b )² = )²54²( = 5 16´ = 80 ( a + b )² = 80 Exercice 4: d"après Brevet des Collèges - Poitiers - 1990

Prouver que

12 5 75 2 - 2 8 +´est un nombre entier . ( le symbole "x" est le

symbole de la multiplication )

Correction :

2 8´ = 16= 4 (d"après la propriété b ab a´=´ qui doit également se lire b a b a´=´)

L"expression à calculer est donc égale à ( nous appellerons A cette expression ) : A =

12 57522 8+-´

A = 3 4 53 25216´+´-

A =

3 4 53 2524´+´-

A = 3 2 53 5 24´´+´´-

A =

3103104+- = 4 A = 4 donc A est un entier

Remarque :

Le premier terme pouvait également être simplifier comme suit :

4 2 2 )² 2 ( 2 224 22 4 28=´=´=´´=´´=´

Exercice 5:

Les côtés d"un triangle IJK ont pour longueurs : IJ = 2 3 + 3 IK = 3 3 - 2 et JK = 2 13

Démontrer que le triangle IJK est rectangle .

Correction :

Recherche du plus grand côté :

A l"aide de la calculatrice , nous constatons que : IJ = »+ 332 6,46 IK »- 2 33 3,19 et JK = »132 7,21 Par conséquent , si le triangle IJK est rectangle , il ne peut être rectangle qu"en I.

Le triangle IJK est-il rectangle en I ?

Nous avons ( calculs séparés ) :

? JK² = 52 13 4 )² 13( 2² )²13(2=´=´= ? IJ² + IK² = )² 2 33 ( )² 3 32 (-++ IJ² + IK² = ] 2² 312 )² 33 [( ] 3² 312 )²32 [(+-+++

IJ² + IK² =

] 4 312 )² 33²( [ ] 9 312 )²32²( [+-+++ IJ² + IK² = ] 4 312 3 9 [ ] 9 312 3 4 [+-´+++´ IJ² + IK² = ] 4 312 27 [ ] 9 312 12 [+-+++ Continuons le calcul dans chaque parenthèse ou supprimons les :

IJ² + IK² =

4 312 27 9 312 12+-+++ = 12 + 9 +27 + 4 = 52

Ces deux calculs permettent d"écrire que :

JK² = IJ² + IK²

Donc, d"après la réciproque du théorème de Pythagore, le triangle IJK est rectangle en I

Exercice 6: Brevet des Collèges - Caen - 1994

Soit l"expression C = x² - 6x + 7

Correction :

? Si x = 5 , nous avons : C =

7 5 6)² 5(+´-

C =

7 5 65+´-= 12 - 6 5 5612 C-=

? Si x = 2 3+ ou (2 3+ ), nous avons :

7 )2 (3 6)²2 (3 C++´-+=

7 )2 (3 6)²] 2 ( 26 3² [ C++´-++=

7 )2 (3 6] 2 26 9 [ C++´-++=

7 2 6 18 2 26 9 C+--++=

2 6 26 7 18 2 9 C-++-+= = 0 C = 0

Exercice 7: Brevet des Collèges - Reims - Septembre 93 Effectuer le calcul suivant en donnant le résultat sous la forme

2 a , a étant un entier

relatif .

50 - )2 ( 3 2 8 - 8 2 B

3+=

Correction :

50)2( 3 2 8 82 B

3-+-=

Si nous regardons l"expression, nous pouvons constater que nous devons simplifier chacun des termes .

8 se simplifie sans problème, ainsi que 50 . La difficulté provient du troisième terme

3)2( 3 .

Aucune propriété liant les racines carrées et l"élévation à la puissance 3 n"est connue. Revenons donc à la

définition de l"élévation au cube.

Nous avons :

2 3 x pour C b)Calculer. relatifs entiers des sont b et a où 5 b a forme la sous résultat le écrire et 5 x pour C a)Calculer+=+=

222 )2(

3´´== 2)²2(´= 22´

Remplaçons donc

3)2( par 22´

Nous avons :

2 2522 3 2 8 2 42 B´-´´+-´=

22522 3 2 8 242 B´-´´+-´=

2522 3 2 8 22 2 B´-´´+-´´=

2526 2 8 24 B-+-=

23 B-= 23 B-=

Exercice 8:Brevet des Collèges - Nice - Montpellier - Toulouse - 1991 Développer et écrire le plus simplement possible : )7 2 3 )( 3 2 2 ( )² 2 5 4 ( D++++=

Correction :

D = )7 2 3 )( 3 2 2 ( )² 2 5 4 (++++

D = ) 21 2 9 2 14 )²2( 6 ( ] )²2 5 ( 2 40 4² [++++++ D = ) 21 2 9 2 14 2 6 ( ] )²2( 5² 2 40 16 [+++´+´++ D = ) 21 2 9 2 14 12 ( ] 2 25 2 40 16 [++++´++ D = ) 21 2 9 2 14 12 ( ] 50 2 40 16 [++++++ D =

21 2 9 2 14 12 50 2 40 16++++++

D =

2 9 2 14 2 40 21 12 50 16++++++ = 2 63 99+ D = 2 63 99+

quotesdbs_dbs47.pdfusesText_47