[PDF] Table des matières 1 Analyse - Maths en ECS2-Poincaré-Nancy



Previous PDF Next PDF







Méthodes et Exercices de Mathématiques MPSI

Corrigés des exercices 19 3 Suites numériques 29 Les méthodes à retenir 30 Énoncés des exercices 32 Du mal à démarrer ? 36 Corrigés des exercices 37 4 Fonctions réelles ou complexes d’une variable réelle 47 Les méthodes à retenir 47 Énoncés des exercices 49 Du mal à démarrer ? 52 Corrigés des exercices 53 5 Dérivation 59



Suites arithmétiques et géométriques - Corrigé

N Duceux – Lycée Paul Doumer – Année 2012/13 Page 2 b) ièmeCalculer la somme des termes consécutifs du 16 ièmeau 38 (de l’indice 15 à l’indice 37) c) Calculer la somme des 10 premiers termes consécutifs



Exercices de Michel Quercia Table des matières

Exercices de Michel Quercia Les exercices suivants ont été recueillis par mes étudiants (Maths-Sup, puis Maths-Spé) aux oraux des concours d’entrée aux grandes écoles Ils sont classés par thèmes correspondant grosso-modo aux différents chapitres des



Table des matières 1 Analyse - Maths en ECS2-Poincaré-Nancy

1 2 Suites Recueil d’exercices corrigés de première année ECS 1 ANALYSE Exercice 13 Étudierlasuiteudéfinieparu 0 = 2 et8n2N;u n+1 = p u n+1 Correctionno 13 Setraitecommel’exerciceprécédent Lasuiteestdécroissante



Espaces vectoriels - Claude Bernard University Lyon 1

Espaces Vectoriels Pascal lainé 2 2 ( 1, 3) 3 ( 1, 1+2, 4) 4 (3 1+ 3, 3, 2+ 3) 5 (2 1+ 2, 1−3 2, 4, 2− 1) Allez à : Correction exercice 8



Limite, continuité, théorème des valeurs intermédiaires

Limites, continuité dérivabilité Pascal Lainé 1 Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis



Les exercices corrigés ci-dessous ont été donnés en colle de

L Gulli Page 1 sur 56 Colles ECE 1ère année Corrigés Les exercices corrigés ci-dessous ont été donnés en colle de Maths ECE première année, durant l’année 2013-2014 au Lycée Ozenne à Toulouse Thèmes Pages



Convergence dominée et intégrales à paramètres - Maths SB

Convergence dominée et intégrales à paramètres PC 17-18 Exercice 1 Montrer que u n= ( 1)n Z +1 0 d t (1 + t3)n est dé nie pour n 1 Calculer lim n+1 Z +1 0 d t (1 + t3)n En déduire la nature de la série de terme général u



Feuille d’exercices 10 Développements limités-Calculs de limites

1 Université Claude Bernard-Lyon 1 Semestre de printemps 2016-2017 Fondamentaux des mathématiques 2 Feuille d’exercices 10 Développements limités-Calculs de limites



EXERCICES PROBLEMES PHYSIQUE MPSI PCSI PTSI

Exercices Co nseils Déterminer l’équation horaire du mouvement de chaque voiture Co nseils Il suffit de passer du système de coordonnées carté-siennes (x, y)ausystème de coordonnées polaires (r,q),etinversement,pourobtenirl’uneoul’autredes équations recherchées Co nseils 1) Penser àremplacer cos 2 q 2 par 1 2 (1 +cosq)et

[PDF] Maths probabilité !!

[PDF] Maths probabilité 3 è m e

[PDF] Maths Probabilité ES

[PDF] maths probabilité pour dem

[PDF] maths probabilités

[PDF] MATHS PROBLEME

[PDF] Maths problème

[PDF] MATHS PROBLEME 4ème

[PDF] Maths problème avec des fractions !

[PDF] maths problème calculer expression

[PDF] Maths problème de géométrie

[PDF] Maths Problème Equations

[PDF] Maths probleme parabole fonction second degres

[PDF] Maths problème parenthèse

[PDF] Maths Programme de calcul

Recueil d"exercices corrigés de première année ECS1 ANALYSETable des matières

1 Analyse 1

1.1 Sommes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Séries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Fonctions usuelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Convexité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Intégration, primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7 Limites, continuité, dérivabilité . . . . . . . . . . . . . . . . . . . . . . . 14

1.8 Formules de Taylor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Algèbre 19

2.1 Dénombrements, applications et ensembles . . . . . . . . . . . . . . . . . 19

2.2 Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Polynômes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Espaces vectoriels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Matrices et systèmes linéaires . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Applications linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Probabilités 30

3.1 Probabilités élémentaires . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Variables aléatoires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Informatique 33Ces exercices courts, pour la plupart donnés en colles en première année, constitue

une collection quasiment exhaustive des propriétés et méthodes que doit maîtriser un

étudiant en fin de première année. Il constitue une base de révision pour l"étudiant de

seconde année.

NicolasMaillard

colasmaillard@free.fr1 Analyse

1.1 SommesExercice1.1.Démontrer par récurrence surnla formule donnantnX

k=0k 2.

2.En calculant de deux façonsnX

k=0 (k+ 1)

4k4, retrouver la formule donnant

n X k=0k

3.Correction n

o1.

1.Pourn2N;P(n): "nX

k=0k

2=n(n+ 1)(2n+ 1)6

2.Par télescopagenX

k=0 (k+ 1)4k4= (n+ 1)4, et en développant : (k+ 1)4k4== 4k3+ 6k2+ 4k+ 1, (n+ 1)4= 4nX k=0k

3+ 6nX

k=0k

2+ 4nX

k=0k+nX k=01 (n+ 1)4= 4nX k=0k

3+n(n+ 1)(2n+ 1) + 2n(n+ 1) +net il n"y a plus qu"à isoler

n X k=0k

3==n2(n+ 1)24

.Exercice2.Calculer nX i=10 nX j=1max(i;j)1 A .Correction n o2.nX i=1 nX j=1max(i;j)! =nX i=1 iX j=1i+nX j=i+1j! =nX i=1 ii+n(n+ 1)2 i(i+ 1)2 nX i=1 i22 i2 +n(n+ 1)2 =12 n(n+ 1)(2n+ 1)6 n(n+ 1)2 +n2(n+ 1)

Lycée HenriPoincaré1/35lo

1.2 SuitesRecueil d"exercices corrigés de première année ECS1 ANALYSE=

n(n+ 1)(2n+ 1)3 + 6n)12 =n(n+ 1)(8n2)12 =n(n+ 1)(4n1)6 Exercice3.Soitdetfdeux entiers naturels tels qued6f(d=début etf=fin!).

1. a)Montrer que :8i2[[d;f]];

i d! i+ 1 d+ 1! i d+ 1! b)En déduirefX i=d i d!

2.Retrouver ce résultat en raisonnant par récurrence surf.Correction n

o3.

1. a)Formule de Pascal :

i+ 1 d+ 1! i d! i d+ 1! b)Télescopage : fX i=d i d! =fX i=d i+ 1 d+ 1! i d+ 1!! f+ 1 d+ 1! d d+ 1! f+ 1 d+ 1!

1.2 SuitesExercice4.On considère la suite(un)n2Ndéfinie par

u

0= 2,u1= 5et8n2N; un+2= 5un+16un.

Calculerunen fonction den.Correction n

o4.

Suite récurrente linéaire d"ordre 2, racines de l"équation caractéristique :2et3.8n2N;un=

2 n+ 3n.Exercice5.On considère la suite(un)n2Ndéfinie par u

0= 2,u1=2 +p3

2 et8n2N; un+2=un+1un.

Calculerunen fonction den.Correction n

o5. Suite récurrente linéaire d"ordre 2, racines de l"équation caractéristique : 1ip3 2 =ei=3:9(a;b)2R;8n2N; un=asin(n=3) +bcos(n=3) u

0= 2)b= 2,u1=2 +p3

2 )a= 1:8n2N;un= sin(n=3) + 2cos(n=3).Exercice6.On considère la suite(un)n2Ndéfinie par u

0=1,u1= 4et8n2N; un+2= 4un+14un.

Calculerunen fonction den.Correction n

o6.

Suite récurrente linéaire d"ordre 2, unique racine de l"équation caractéristique :2:9(a;b)2

R;8n2N; un= 2n(an+b)

u

0=1)b=1,u1= 4)a= 3:8n2N;un= 2n(3n1).Exercice7.Étudier la suiteudéfinie paru0= 0,u1= 1et

8n2N; un+2= 4un+14un+ 2.

On pourra utiliser une suite auxiliaire du type(unCte)n2NoùCteest une constante adéquate.Correction n o7.

Soit2Ret, pour toutndeN,vn=un. Alors :8n2N;

u n+2= 4un+14un+ 2,vn+2+= 4vn+1+ 44vn4+ 2 ,vn+2= 4vn+14vn+ (2)

En prenant= 2,vvérifie une relation de récurrence linéaire d"ordre 2, d"équation caracté-

ristiquex24x+ 4 = 0dont la racine double est2. Il existe(a;b)2R2tel que

8n2N; vn= 2n(an+b), avecv0=u0+ 2 = 2etv1=u1+ 2 = 3.

On trouve alors :8n2N; vn= 2n(2n=2) = 2n1(4n),

puis :8n2N; un= 2n1(4n)2.Exercice8.Étudier la suiteudéfinie paru0= 1,u1= 0et

8n2N; un+2=un+1+ 2un+ 3.

On pourra utiliser une suite auxiliaire du type(unn)n2Noùest une constante adéquate.Correction n o8.

Soit2Ret, pour toutndeN,vn=unn. Alors :8n2N;

u n+2= 4un+14un+ 2,vn+2+ (n+ 2)=vn+1(n+ 1)+ 2vn+ 2n+ 3 ,vn+2=vn+1+ 2vn+ (3)

Lycée HenriPoincaré2/35lo

1.2 SuitesRecueil d"exercices corrigés de première année ECS1 ANALYSEEn prenant= 3,vvérifie une relation de récurrence linéaire d"ordre 2, d"équation caracté-

ristiquex2+x2 = 0dont les racines sont2et1. Il existe(a;b)2R2tel que

8n2N; vn= (2)na+b, avecv0=u0= 1etv1=u13 =3.

On trouve alors :8n2N; vn=43

(2)n13 =13 (2)n+21, puis :8n2N; un=13 (2)n+21+ 3n.Exercice9.Soitvla suite définie par v

0=eet8n2N; vn+1=ev2n:

1.Montrer quevest strictement positive et strictement croissante.

2.Montrer quevdiverge et quelimn!+1vn= +1.

3.Pour toutndeN, on pose :un= ln(vn). Exprimerunen fonction denet en

déduirevnen fonction den. Retrouver les réponses aux questions précédentes

à l"aide de cette expression.Correction n

o9.

1.On montre par récurrence que :8n2N; vn>e.

Du coup :8n2N;vn+1v

n=evn>e2>1doncvcroît.

2.On peut montrer par récurrence que :8n2N; vn>en, et par comparaison,

limn!+1vn= +1. On peut aussi raisonner par l"absurde. Supposonsvconvergent, de limite`. Alors limn!+1vn+1=`etlimn!+1ev2n=e`2. Par unicité de la limite :`=e`2. `=e`2,`(1e`) = 0,(`= 0ou`= 1=e). Or :8n2N;vn>e)`>e, donc`6= 0et`6= 1=e. Contradiction : doncvdiverge, et commevest croissante,vdiverge vers+1.

3.uvérifie la relation de récurrence :8n2N;un+1= ln(ev2n) = 1+2un: c"est une suite

arithmético-géométrique.

Avecu0= 1, on obtient :8n2N;un= 2n+11.

Alors :8n2N;vn= exp(2n+11)!n!+1+1.Exercice10.On considère la suite(un)n2Ndéfinie par u

0= 1et8n2N; un+1= ln(un+ 1).

1.Montrer que la suite(un)n2Nest bien définie. et que :8n2N; un>0.

2.Montrer que la suite(un)n2Nest décroissante.

3.Justifier la suite(un)n2Nest convergente et déterminer sa limite.Correction n

o10.

1.Par récurrence surn2N:P(n): "unexiste etun>0».

2.Par récurrence :u1= ln(2)6u0, etun6un1)un+16un1+1)ln(un+1)6

ln(un1+ 1))un+16un. Variante :un+1un= ln(un+ 1)unet on montre (en l"étudiant) que la fonction x7!ln(x+ 1)xest négative sur]0; +1[.

3.uest décroissante et minorée donc converge, et commeuest positive, sa limite`est

positive (ou nulle). Commelimn!+1un+1=`etlimn!+1ln(un+ 1) = ln(`+ 1),`= ln(`) + 1. L"étude dex7!ln(x+ 1)xsur[0; +1[montre que`= 0est l"unique solution de `= ln(`) + 1. Donc`= 0.Exercice11.On considère la suite(un)n2Ndéfinie par u

0= 0et8n2N; un+1=pu

n+ 2.

1.Montrer que la suite(un)n2Nest bien définie. et que :8n2N;06un62.

2.Étudier la variation de la suite(un)n2N.

3.Justifier la suite(un)n2Nest convergente et déterminer sa limite.Correction n

o11.

1.Par récurrence surn2N:P(n): "unexiste et2>un>0».

2.Par récurrence :u1=p2>u0, etun>un1)un+ 2>un1+ 2)pu

n+ 2>pu n1+ 2)un+1>un.

3.uest croissante et majorée donc converge, et comme06u62, sa limite`est positive

et inférieure à2.

Commelimn!+1un+1=`etlimn!+1pu

n+ 2 =p`+ 2,`=p`+ 2.

`=p`+ 2,`2`2 = 0,(`= 2ou`=1), or`>0, donc`= 2.Exercice12.Étudier la suiteudéfinie paru0= 1et8n2N; un+1=unu

quotesdbs_dbs47.pdfusesText_47