[PDF] Cours de mécanique du point - LPSC



Previous PDF Next PDF







Cours de mécanique du point - LPSC

5 ENERGIE MECANIQUE 93 6 THEOREME DE L’ENERGIE MECANIQUE 95 7 SYSTEMES NON DISSIPATIFS 95 7 1 Propriété 95 7 2 Diagramme d’énergie et états liés 95 7 3 Etats libres et liés Conditions d’équilibre 97 8 UTILISATION DE L’ENERGIE POTENTIELLE ET DU TRAVAIL 99 A 1 B 2



M canique du point

MECANIQUE DU POINT I) Cinématique du point matériel: 1) Référentiel: L’ensemble de tous les systèmes d’axes de coordonnées liés à un même solide de référence S constitue un repère Soit une horloge permettant de mesurer des durées ou intervalles de temps Si on choisit un instant origine, on



MECANIQUE DU POINT MATERIEL - التعليم الجامعي

Maître assistant chargé de cours CAHIER De la (Version en Français) COURS SIMPLIFIES 100 EXERCICES CORRIGES MECANIQUE DU POINT MATERIEL iv Sommaire



COURS DE PHYSIQUE Mécanique MÉCANIQUE DU POINT COURS DE

COURS DE PHYSIQUE MÉCANIQUE DU POINT Alain Gibaud Professeur à l’université du Maine (Le Mans) 2 e édition Michel Henry Agrégé de physique Maître de conférences à l’IUFM des Pays de Loire (Le Mans) M CANIQUE DU POINT Page I Mardi, 26 juin 2007 9:03 09 COURS DE PHYSIQUE Mécanique du point



Mécanique du point - Dunod

Vecteur accélération d’un point mobile 1 5 Exemples de mouvement 1 6 Récapitulatif OBJECTIFS L’objet de la cinématique du point est l’étude du mouvement d’un point sans se préoccuper des causes (les forces) qui lui donnent naissance Connaître le système de coordonnées cartésiennes et polaires ou cylindri-ques



Cours de Point et système de points matériels

les angles et les distances La position de tout point matériel M dans cet espace est définie par rapport à un (ou plusieurs) objet(s) appelé(s) repère Pour caractériser cette position c'est à dire pour repérer le point M, il suffit en général de déterminer 3 paramètres réels q 1, q 2,q3 ou coordonnées du point



Mécanique du point - 2ème édition

aux étudiants de première année à l’université du Maine Il s’agit d’un cours d’introduc-tion à la mécanique du point et des systèmes de points matériels Notre souci au cours de la rédaction de cet ouvrage a été de nous référer aux connaissances acquises par les



TD MECANIQUE DU POINT SERIE I - WordPresscom

TD MECANIQUE DU POINT SERIE I Exercice 0 : Dérivée totale – Dérivée partielle La température d’une particule d’air est fonction des coordonnées spatiales et du temps : T = T(x,y,z,t) 1/ Calculer la dérivée totale dt dT en fonction de la dérivée partielle t T w w, du gradient de la température gradT et du vecteur vitesse V



Mécanique des solides Notes de cours - AlloSchool

Quel que soit le couple de point M et N d'un solide, les vitesses de ces points ~v M et ~v N dans un référentiel Rsuivent une relation d'antisymétrie ~v M = ~v N+ ~^ NM On parle donc du torseur des vitesses (ou torseur cinématique) du solide, de moment ~v M en M, et de résultante ~, le vecteur rotation du solide

[PDF] Mecanique des fluides

[PDF] mécanique des fluides bernoulli

[PDF] mecanique des fluides cours

[PDF] mécanique des fluides exercices corrigés

[PDF] mécanique des fluides exercices corrigés avec rappels de cours

[PDF] mécanique des fluides exercices corrigés avec rappels de cours pdf

[PDF] mécanique des fluides formules

[PDF] mécanique des fluides pdf

[PDF] mécanique des fluides perte de charge

[PDF] mécanique des fluides pour les nuls

[PDF] mécanique des fluides trafic routier

[PDF] mécanique des structures cours

[PDF] mécanique des structures pdf

[PDF] mecanique du point cinematique

[PDF] mecanique du point licence 1

Université Joseph Fourier ± Grenoble 1

Licence 1ère année

Cours de mécanique du point

10ème édition / mai 2011

Gilbert VINCENT

TZZZT TZZZT doivent être à gauche (en regard des pages correspondantes (situées à droite, qui supportent le Les figures ne sont pas référencées dans le texte, mais dans la quasi totalité des cas, elles correspondent au texte de la page en regard. de diapositives commentées, avec quelques compléments, de Foucauld), et un tableur interactif de calcul de la puissance

GpYHORSSpHSDUXQF\FOLVWHXQHYRLWXUH"

Pour tout problème ou demande de document informatique,

SOMMAIRE

SOMMAIRE

Sommaire chapitres : I à XII

Introduction p.1

I. Principes fondamentaux de la dynamique p.5

II. Forces p.27

III. Cinématique p.41

IV. Moments p.71

V. Travail. Energie cinétique p.79

VI. Energie potentielle et mécanique p.87

VII. Collisions (2 masses) p.101

VIII. Gravitation p.115

IX. Problème des 2 corps p.123

X. Problème des 2 corps: résolution p.137

XI. Changement de référentiel (repère) p.159 XII. Référentiels non Inertiels (non Galiléens) p.171

Bibliographie p.176

CE COURS EST SUR INTERNET

On trouvera aussi sur ce site quelques pages supplémentaires: x Compléments et exercices (Voir le détail en fin de polycopié) x Marée océanique (Conseillé pour ne pas croire à la sorcellerie) x Pendule de Foucault x Gyroscope x I

I. PRINCIPES FONDAMENTAUX DE LA DYNAMIQUE 5

1. QUANTITE DE MOUVEMENT: DEFINITION 5

2. PRINCIPE FONDAMENTAL DE LA DYNAMIQUE: PFD 5

4. APPLICATION: INTERACTION ENTRE 2 CORPS ISOLES 7

5. CONSEQUENCE: LES TROIS LOIS DE NEWTON 9

5.1 Du PFD aux deux premières lois de Newton 9

5.2 Enoncé des trois lois 9

6. CONDITION DE MASSE CONSTANTE 11

7. APPLICATION DES LOIS DE NEWTON. CENTRE DE MASSE 11

8. CONDITIONS D'APPLICATION DU PFD 15

8.1 Référentiels, repères et systèmes de coordonnées. 15

8.2 Référentiel Inertiel (ou Galiléen) 17

8.3 Ensemble de référentiels Inertiels (ou Galiléens) 17

9. RESUME 19

ANNEXE 1 : MASSE CONSTANTE. LECTURE FIL ROUGE. CENTRE DE MASSE

ET FORCES EXTERIEURES. 21

ANNEXE 2 : MASSE NON CONSTANTE, LECTURE FIL ROUGE 23 A/ Principe fondamental et 2ème loi de Newton 23

B/ Force et accélération 23

C/ PFD et force nulle 23

D/ Exercice de différentiation : centre de masse et principe fondamental 25 p(t) p(t+dt)F.dt p(t)p(t) p(t+dt)p(t+dt)F.dt II

II. LES FORCES 27

1.1 Force gravitationnelle 27

1.2 Forces de Lorentz (électrique et magnétique) 29

Force électrique 29

Force magnétique 29

1.3 Force faible 29

1.4 Force forte 31

2. FORCES DE CONTACT 31

2.1 Frottement solide (ou frottement sec ou loi de Coulomb) 31

Solides sans glissement relatif 31

Solides en mouvement relatif 33

Illustration 33

2.2 Frottement visqueux 35

Vitesse faible 35

Vitesse élevée 35

Transition vitesse faible/ vitesse élevée 37

2.4 Forces de tension 39

Ressort 39

Lame de ressort : 39

Tension d'un fil de masse négligeable. 39

RRN RT RRRN RT III

III. CINEMATIQUE 41

1. INTRODUCTION 41

2. DEFINITION DES VECTEURS POSITION, VITESSE ET ACCELERATION 41

2.1 Position 41

2.2 Vitesse 43

2.3 Accélération 43

3. DIFFERENTIELLE D'UN VECTEUR ET DERIVEE 43

3.1 Différentielle d'un vecteur unitaire dans un plan / dérivée 45

3.2 Différentielle /Dérivée d'un vecteur unitaire dans l'espace 49

3.3 Différentielle d'un vecteur quelconque: conclusion 49

4. VECTEURS DANS LES DIFFERENTS SYSTEMES DE COORDONNEES 51

4.1 Coordonnées cartésiennes 51

4.2 Coordonnées cylindriques (et polaires) 55

4.3 Coordonnées sphériques. 61

4.4 Coordonnées curvilignes, ou repère de Frenet. 65

5. CONCLUSION 69

ANNEXE: DIFFERENTIELLES DE SCALAIRES, VECTEURS... 69 u u1du O u u1du O IV

IV. MOMENTS. THEOREME DU MOMENT CINETIQUE.

APPLICATION : MOUVEMENT A FORCE CENTRALE 71

1. MOMENT D'UNE FORCE 71

2. MOMENT CINETIQUE 71

3. THEOREME DU MOMENT CINETIQUE 73

4. APPLICATION : MOUVEMENT A FORCE CENTRALE 75

5. EXTENSIONS : COUPLE, ET MOMENT PAR RAPPORT A UN AXE 77

5.1 Moment d'un couple 77

5.2 Moment par rapport à un axe 77

6. CONCLUSION 77

L(t)

L(t+dt)

m.dt L(t)

L(t+dt)

m.dt V

V. TRAVAIL, PUISSANCE, ENERGIE CINETIQUE 79

1.1 Définition différentielle 79

1.2 Travail sur un parcours 79

1.3 Exemple 81

1.4 Cas très particulier de la force constante 81

2. PUISSANCE 83

3. ENERGIE CINETIQUE 83

5. ENERGIE CINETIQUE: OUVERTURE RELATIVISTE 85

F dl A B VI

VI. ENERGIES POTENTIELLE ET MECANIQUE 87

1. FORCES CONSERVATIVES ET NON CONSERVATIVES 87

1.1 Forces conservatives 87

1.2 Forces non conservatives (dissipatives) 87

2. ENERGIE POTENTIELLE (FORCES CONSERVATIVES SEULEMENT) 89

3. FORCE ET ENERGIE POTENTIELLE 91

4. TRAVAIL ET ENERGIE POTENTIELLE 93

5. ENERGIE MECANIQUE 93

7. SYSTEMES NON DISSIPATIFS 95

7.1 Propriété 95

A B1 2 A B1 2 VII

VII. COLLISIONS 101

1. INTRODUCTION 101

2. CONSERVATION DE LA QUANTITE DE MOUVEMENT 101

3. DIMENSIONS DE LA COLLISION. 101

4. RELATION ENTRE LES VITESSES (MASSES CONSTANTES) 103

5. COLLISIONS ELASTIQUES (CONSERVATION DE Ec) 103

5.1 Propriétés 103

5.2 Collision élastique de deux masses identiques dont une est immobile. 105

5.3 Collision élastique directe 105

5.4 Collision élastique directe avec une masse immobile 107

6. COLLISION INELASTIQUE (NON CONSERVATION DE Ec). 109

7. COLLISIONS ET REPERE LIE DU CENTRE DE MASSE 111

7.1 Cas général 111

7.2 Collision élastique 111

7.3 Collision totalement inélastique (encastrement) 113

7.4 Changement de repère 113

VIII

VIII GRAVITATION 115

1. FORCES DE GRAVITATION 115

2. CHAMP DE GRAVITATION 115

3.1 Analyse du poids 117

3.2 Bilan 119

4. ACCELERATION LOCALE DE LA PESANTEUR 119

5. TRAVAIL ET ENERGIE POTENTIELLE (R>RT) 121

Fr

Fgrav.

Fr

Fgrav.

IX

IX. PROBLEME DES DEUX CORPS 123

1. LES DEUX CORPS (PONCTUELS, OU A SYMETRIE SPHERIQUE) 123

2. QUANTITE DE MOUVEMENT 123

3. CENTRE DE MASSE 125

4. PROPRIETES DU CENTRE DE MASSE 125

4.1 Quantité de mouvement. 125

4.2 Accélération du centre de masse 127

5. REPERE GALILEEN LIE A AU CENTRE DE MASSE 127

6. APPLICATION DU PRINCIPE FOND. DE LA DYNAM. DANS GXYZ 127

7. MOMENT CINETIQUE 129

8. THEOREME DU MOMENT CINETIQUE 131

8.1 Application du théorème 131

8.2 Conséquence : mouvement dans un plan 131

9. ENERGIE CINETIQUE DU SYSTEME 133

10. TRAVAIL DES FORCES GRAVITATIONNELLES 133

11. ENERGIE POTENTIELLE 135

12. ENERGIE MECANIQUE 135

V1 V2 G V1 V2 G X

X. PROBLEME DES DEUX CORPS: RESOLUTION 137

1. EQUATIONS DE DEPART 137

2. TRAJECTOIRE 139

3. MOUVEMENT CIRCULAIRE 143

4. ELLIPSE 143

4 .3 Lois de Kepler (ellipse) 145

4 .4 Equation horaire 147

5. ENERGIES 149

6. ORBITES ET CONDITIONS INITIALES 149

6 .1 Paramètres de la conique 149

6.2 Orbite elliptique 153

6.3 Orbite parabolique ou hyperbolique 155

7. SYNTHESE 157

V0

La vitesse V0croît

r0

Cercle

TerreV0

La vitesse V0croît

r0

Cercle

Terre XI

XI. CHANGEMENT DE REFERENTIEL (REPERE) 159

1. DEFINITIONS 159

1.1 Repère absolu 159

1.2 Repère relatif 159

1.3 Mouvement d'entraînement 161

1.4 But du jeu 161

2. COMPOSITION DES POSITIONS, VITESSES, ACCELERATIONS 161

2.1 Position 161

2.2 Vitesse 161

2.3 Accélération 165

3. CHANGEMENT DE REPERE : CONCLUSION ET RESUME 169

ABSOLU

RELATIF

ABSOLU

RELATIF

XII

XII. REPERES NON INERTIELS (NON GALILEENS) 171

1. INTRODUCTION 171

2. EXEMPLE : MOUVEMENT CIRCULAIRE UNIFORME 171

3. "FORCE" CENTRIFUGE 171

4. PSEUDO FORCES 173

5. PENSER AUTREMENT, PENSER GALILEE 175

5.1 Véhicule qui amorce un virage. 175

5.3 Marées 175

NN -1 et

DOUZE CHAPITRES

0 "Point"matériel et mécaniques

Dimensions

(énergie propre de rotation négligeable) sinon mécanique du solide ‡grandesdevant les dimensions atomiques sinon mécanique quantique

Vitesse

‡petitecomparée à la vitesse de la lumière (3.108m/s) sinon mécanique relativiste 1

Introduction

La mécanique présentée ici concerne exclusivement la mécanique du point. être négligées devant les énergies mises en jeu. Cependant un objet aussi volumineux que la terre ou le soleil peut dans certains cas être assimilable à un point en ce qui concerne, par exemple, son action sur des corps dans son entourage. domaine pour lequel il a été montré il y a un siècle que les notions de mécanique classique doivent être remplacées par celles de mécanique quantique. De même la mécanique relativiste sort du cadre de cette présentation et nous (mécanique "classique"). Toutefois le principe fondamental de la dynamique sera donné

dans le cadre relativiste, son expression étant très simple à partir de la quantité de

mouvement, et nous en déduirons les relations classiquement utilisées que sont les lois de Newton. Nous supposerons qu'un temps unique peut-être défini en tout point de l'espace, et que les longueurs, masses, temps, et forces sont invariantes lors d'un changement de référentiel. mouvement. appliquées. oe* mathématiques regroupées sous le nom de cinématique * oe oe Nous serons ainsi capables de décrire le mouvement à partir de la force appliquée, et inversement de déduire la force si la trajectoire est connue : oe 2

Contenu -Chapitres

fondamentaux de repères

Galiléens

résolution Bases

2 physiques

1 mathématique

Compléments

1 vectoriel

2 scalaires

ApplicationsExtensions

Áquotesdbs_dbs47.pdfusesText_47