[PDF] Application du produit scalaire: Géométrie analytique



Previous PDF Next PDF







Le Le produit scalaire - Meabilis

Le produit scalaire hoisie l de côté 3, B' est le milieu de [AC] et D le point d arycentre du système : {(A,3); (B,-2); (C,3)} ent à la médiatrice du segment [AC] es points M vérifiant la relation : 3 MA² - 2 MB² + 3 té G du triangle ABC appartient à (E) riangle ABC tel que : AB = 7 cm, BC = 4 cm et AC = e vecteur est-il égal à un



Produit scalaire : Résumé de cours et méthodes

Produit scalaire : Résumé de cours et méthodes est un vecteur normal de la médiatrice qui admet donc une équation de la forme 2x 8y+c=0



Etude Analytique du Produit scalaire - Dyrassa

⃗ Soit n un entier naturel Démontrer 1 que 6 × n + 9 est multiple de 3 ; 2 que (n + 2)2 − n 2 est multiple de 4 ; 3 et que que (n + 2)2 − (n − 2)2 est multiple de 8



Le produit scalaire Exercice 1

Le produit scalaire Exercice 1 : Dans chacun des cas suivants, calculer le produit scalaire La perpendiculaire en A à (AB) c) La médiatrice de [AB] 2) ABC est



Application du produit scalaire: Géométrie analytique

Application du produit scalaire: Géométrie analytique I) Vecteur normal et équation de droite 1) Vecteur normal à une droite Dire que , & est un vecteur non nul normal à une droite (d) de vecteur directeur , & signifie que , & est orthogonal à , & Conséquence : Caractérisation d’une droite par un point donné et un vecteur



NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 18 A B D C E (C) est un cercle de centre O, de rayon Ret Aest un point fixé du plan Le but du problème est d’établir la propriété suivante : « Quelle que soit la droite (d) passant par A, coupant le cercle (C) en deux points Pet Q, le produit scalaire AP AQest constant



1 Normed’unvecteur

Chapitre: Produit Scalaire Première S Propriétés3 •Une droite de vecteur normal #»n(a;b) admet une équationcartésiennede la forme ax+by +c =0 où c estunnombreréelà déterminer



Exercices corrigés - AlloSchool

Exercice 7 : produit scalaire de vecteurs colinéaires Exercices 8 et 9 : produit scalaire de vecteurs quelconques à l’aide d’une projection orthogonale Exercices 10, 11, 12 et 14 : produit scalaire en fonction des normes de vecteurs et d’un angle orienté Exercice 13 : quadrangle orthocentrique



TS EXERCICES PRODUIT SCALAIRE - enthdffr

TS EXERCICES PRODUIT SCALAIRE Produit scalaire dans le plan EXERCICE 1 ABC est un triangle rectangle et isocèle en A I et J sont définis par AB 3 1 AI et AC 3 1 AJ , K est le milieu de [IC] Démontrer que les droites (AK) et (JB) sont perpendiculaires



1Bac F Produit scalaire AKarmim PRODUIT SCALAIRE DANS ????

1Bac F Produit scalaire A Karmim 1 PRODUIT SCALAIRE DANS ????2 I) RAPPELLE 1) Définition du produit scalaire 1 1 Mesure algébrique : Définition : Soit ( )( , ) une droite graduée ; et deux points sur la droite ( ) d’abscisses respectifs et le réel −

[PDF] médiatrice propriété

[PDF] médiatrice triangle isocèle

[PDF] médiatrice triangle rectangle

[PDF] Mediatrice, triangle et equidistance - Probleme du Pere Lapaille

[PDF] Médiatrices d'un triangle

[PDF] medical exam ellis island

[PDF] medical latin dictionary

[PDF] medicament alcool sevrage

[PDF] medicament et alcool mort

[PDF] medicament generique medicament

[PDF] medicament mortel liste

[PDF] medicament mortel pour l'homme

[PDF] médicament mortel sans ordonnance

[PDF] medicament physique chimie pour demain

[PDF] médicaments incompatibles avec l'alcool

Application du produit scalaire:

Géométrie analytique

I) Vecteur normal et équation de droite

1) Vecteur normal à une droite

Dire que ࢔,,& est un vecteur non nul normal à une droite (d) de vecteur directeur ࢛,,& signifie que ࢔,,& est orthogonal à ࢛,,& . Conséquence : Caractérisation d'une droite par un point donné et un vecteur normal Dire qu'un point M appartient à la droite (d) passant par le point A et de vecteur normal ࢔ & si et seulement si ࡭ࡹ et ࢔,,& sont orthogonaux, c'est-à-dire : si et seulement si La droite (d) est l'ensemble des points M tels que

2) Vecteur normal d'une droite d'équation ࢇ࢞ ൅ ࢈࢟ ൅ ࢉ ൌ ૙

a) Propriétés : • Une droite (d) de vecteur normal ࢔,,& (a ; b) a une équation cartésienne de la forme ࢇ࢞ ൅ ࢈࢟ ൅ ࢉ ൌ ૙ où c est un nombre réel.

• La droite (d) d'équation cartésienne ࢇ࢞ ൅ ࢈࢟ ൅ ࢉ ൌ ૙ avec

(a ; b) ് (0 ; 0) a pour vecteur normal ࢔,,& (a ; b) b) Démonstration :

A(ݔ

appartient à (d) si et seulement si ܯܣ si et seulement si ܽ ) = 0 qui est équivalent à : = 0 qui est équivalent à : ܽݔ + ܾݕ ൅ ܿ= 0 avec ܿ= െܽ & (-b ; a). & le vecteur de coordonnées (a ; b). & est un vecteur normal à (d). c) Exemples: ȳ (3 ; 4 ) passant par les points A(4 ; 8) B(2 ; 0 ) et C(-1 ; 5 ) Déterminer une équation cartésienne des droites suivantes : a) La médiatrice du segment [BC] b) La hauteur du triangle ABC issue de B c) La tangente en A au cercle C

Réponse :

a) La médiatrice du segment [BC] est la droite (d 1 ) passant par le milieu I du segment [BC] et perpendiculaire à (BC), donc la droite (d 1 ) passe par le point I et a pour vecteur

Une équation cartésienne de la droite (d

1 ) est donc de la forme : -3ݔ + 5ݕ + c = 0

I le milieu de [BC] a pour coordonnées : I (

I appartient à la droite, ses coordonnées vérifient l'équation de (d 1 -3ൈ ଵ + 5ൈ ହ

On obtient : c = െʹʹ

= -11 Une équation cartésienne de la médiatrice (d 1 ) du segment [BC] est donc : -3࢞ + 5࢟ - 11 = 0 b) La hauteur issue de B est la droite (d 2 ) passant par le point B, perpendiculaire au côté [AC], donc la droite (d 2) passe par le point B et a pour vecteur normal ܥܣ @Fw FuA

Une équation cartésienne de la droite (d

2 ) est donc de la forme : -5ݔ - 3ݕ + c = 0 B (2 ; 0) appartient à la droite, ses coordonnées vérifient l'équation de (d 2 -5ൈ 2 - 3ൈ 0 + c = 0

On obtient : c = 10

Une équation cartésienne de la hauteur (d

2 ) issue de B est donc : -5࢞ - 3࢟ + 10 = 0 c) La tangente (d 3 ) en A au cercle (C ) de centre ȳ est la droite passant par A perpendiculaire au rayon [ȳ A]. (d 3 ) est donc la droite passant par le point A de vecteur normalܣߗ

Une équation cartésienne de la droite (d

3 ) est donc de la forme :

ݔ + 4ݕ + c = 0

A (4 ; 8) appartient à la droite, ses coordonnées vérifient l'équation de (d 3

4 + 4ൈ 8 + c = 0

On obtient : c = -36

Une équation cartésienne de la tangente (d

3 ) en A au cercle (C ) est donc : ࢞ + 4࢟ - 36 = 0

II) Equation cartésienne d'un cercle:

1) Cercle défini par son centre et son rayon

a) Propriétés:

C est le cercle de centre ષ (࢞

) et de rayon R.

Une équation cartésienne de

)² = R² b) Démonstration : Un point M(ݔ ; ݕ) appartient au cercle C de centre ȳ (ݔ ) et de rayon R si et seulement si ȳ; = R² ce qui est équivalent à : )² = R² c) Exemple : Le cercle de centre ȳ (3 ; 5) et de rayon 8 cm a pour équation :

2) Cercle défini par un diamètre

a) Propriété: Le cercle C de diamètre [AB] est l'ensemble des points M tels que : b) Démonstration: Le point M appartient au cercle C de diamètre [AB] si et seulement si le triangle AMB est rectangle en M, c'est-à-dire si et seulement si les vecteurs ܯܣ sont orthogonaux ce qui est équivalent à dire que ܯܣ Lr, On obtient donc une équation de ce cercle en écrivant Lr, c) Exemple : Donner l'équation du cercle C de diamètre [AB] où A(3 ; -2) et B(-3 ; 4) M(ݔ ; ݕ) appartient au cercle C si et seulement si ܯܣ Lr, :TEuquotesdbs_dbs47.pdfusesText_47