[PDF] Université du Québec à Chicoutimi



Previous PDF Next PDF







Université du Québec à Chicoutimi

Figure 2-6 Modélisation d’un cyclone à double entée spialée 180° 18 Figure 2-7 Modélisation du cyclone à entrée tangentielle avec vue juste sous le tube de sortie 18 Figure3-1 Le schéma de gauche montre les paramètres géométriques du cyclone Celui de droite



The Sizing & Selection of Hydrocyclones

the cyclone diameter The cylindrical section is the next basic part of the cyclone and is located between the feed chamber and the conical section It is the same diameter as the feed chamber and its function is to lengthen the cyclone and increase the retention time For the basic cyclone, its length should be 100 of the cyclone diameter



Construction paracyclonique

Des Règles de calcul et dimensionnement existent Elles évoluent pour se rattacher à la réalité du terrain Elles sont modifiées pour tenir compte des nouvelles tempêtes ( reclassement de certains départements dans la carte de zonage pour prise en compte des tempêtes de décembre1999)



Filtre à fumée cyclonique - UQAR

disposera alors d’un fichier de calcul permettant le dimensionnement de cyclones s’adaptant à n’importe quelles applications Contraintes Le fichier de calcul doit permettre au client de dimensionner un cyclone simplement en y entrant les données caractérisant sa fournaise Une fois le calcul fait, les dimensions trouvées



Systèmes Hurricane & ReCyclone

d’un séparateur de particules (cyclone cy-lindrique) à la sortie du cyclone et appelé “recirculateur” (voir croquis) L’objectif premier du recirculateur est de réintroduire les particules fines, non capturées, dans le cyclone, après qu’elles aient été conduites sur les parois du recir-culateur au moyen de forces centrifuges



Une autre dimension pour vos études

Calcul de flexibilité et de supportage Calcul des équipements et des stockages Plans de synthèses et TQC (2D/3D) Suivi de travaux Relevé tri-dimensionnel laser Administrateur PDMS (piping & équipement) NOS OUTILS : PDMS, Autocad 2D/3D, Inventor, CATIA v5, Aft/Fathom, Caesar II, 3D VIA, Cyclone



Guide de sélection de pompe centrifuge - Goulds Pumps

Voir dans le tableau en pages 4 et 5 la liste des huit désignations de marché à codage de couleur 2 Guide de sélection de pompe centrifuge Guide de sélection de pompe centrifuge



Rapport de fin de stage ingénieur

Rapport de fin de stage ingénieur Ce stage a été effectué du 23 Juin 2008 au 30 Octobre 2008 au sein de la société Rio Tinto Alcan à Gardanne (Bouches-du-Rhône) sous la tutelle de

[PDF] electrofiltre industrie

[PDF] electrofiltre fonctionnement

[PDF] électrofiltre pour dépoussiérage

[PDF] electrofiltre cimenterie

[PDF] qu'est ce que la dot dans le mariage traditionnel

[PDF] commerce intégré avantages et inconvénients

[PDF] commerce indépendant avantages inconvénients

[PDF] commerce associé avantages

[PDF] commerce intégré exemple

[PDF] commerce intégré ou succursaliste

[PDF] commerce indépendant définition

[PDF] ntic avantages et inconvénients pdf

[PDF] avantages et inconvenients des ntic

[PDF] avantages et inconvénients des tic ? l'éducation

[PDF] contrat de franchise cours

Université du Québec à Chicoutimi

MODULE D'INGNIERIE

GÉNIE MÉCANIQUE

6GIN333 PROJET DE CONCEPTION EN INGÉNIERIE

Rapport final

# Projet : _____2011-242_______

DESIGN DE SÉPARATEURS CYCLONIQUES

Préparé par

BEAULIEU MARTIN

Pour

FERLAND BERNARD

FILTRARTECH INC.

24 AOÛT 2011

CONSEILLER : FARINAS MARIE-ISABELLE

COORDONNATEUR : Jacques Paradis, ing

i

CONCEPTION DE SÉPARATEURS CYCLONIQUES

Nom du conseiller

Date

Signature

i

CONCEPTION DE SÉPARATEURS CYCLONIQUES

RÉSUMÉ DU PROJET #2011-242

DESIGN DE SÉPARATEURS CYCLONIQUES

BUT Construire une feuille de calcul sous Excel qui pourra calculer automatiquement la perte de facilement comme outil de conception pour un usage commercial.

PROBLÉMATIQUE

L'air est souǀent polluĠ par des Ġmissions de poussiğres ǀenant par edžemple des usines et des

des systèmes de dépoussiérage. Le séparateur cyclonique est une technologie très intéressante :

Pour concevoir un bon cyclone, il faut savoir calculer sa perte de charge, prévoir son efficacité et

granulométrie et la quantité de particules à capter.

PRINCIPAUX RÉSULTATS

Il y a 2 principaux types d'entrĠe d'air͗ le tangentiel et le spiralĠ. Le premier modğle est

relativement simple à concevoir et est celui qui coûte le moins cher à fabriquer. Le deuxième

augmente.

On caractĠrise l'efficacitĠ d'un cyclone par son ͨ diamètre de coupure » (X50), qui correspond au

diamètre de la particule qui sera captée avec une efficacité de 50%. Plus ce diamètre sera petit,

plus il captera de petites particules, plus il sera efficace.

Pour calculer la perte de charge d'un systğme ă entrĠe tangentielle il est prĠfĠrable d'utiliser la

méthode de Chen. Tandis que pour les modğles ă entrĠes spiralĠes, il est bon d'utiliser celle de

Barth-Muschelknautz. Pour le calcul du diamètre de coupure, les méthodes de Barth et de Barth modifié donnent une très bonne idée de la réalité.

CONCLUSION ET RECOMMANDATIONS

Les méthodes proposées dans le paragraphe précédent ont été vérifiées et comparées avec les

résultats expérimentaux de leurs auteurs. Les résultats donnent une bonne idée de la réalité,

mais ne les représentent pas avec perfection, car il est très difficile de modéliser ce qui se passe

en totalitĠ dans un cyclone. C'est trğs compledže et aucun auteur n'a encore rĠussi ă atteindre la

charge est possible. Selon les données expérimentales trouvées, elle atteint un maximum de

15й. Toutefois, il n'y a pas assez d'edžpĠrimentations publiĠes pour tirer des grandes

combien réellement varie cette perte selon la méthode de calcul utilisée. ii

CONCEPTION DE SÉPARATEURS CYCLONIQUES

Table des matières

RÉSUMÉ DU PROJET #2011-242 ........................................................................................................ i

DESIGN DE SÉPARATEURS CYCLONIQUES ................................................................................. i

BUT ................................................................................................................................................ i

PROBLÉMATIQUE .......................................................................................................................... i

PRINCIPAUX RÉSULTATS ................................................................................................................ i

CONCLUSION ET RECOMMANDATIONS ........................................................................................ i

Liste des symboles ........................................................................................................................... iv

Liste des figures ............................................................................................................................... vi

Liste des tableaux ............................................................................................................................ 1

1. Introduction ............................................................................................................................. 1

1.1 Problématique ................................................................................................................. 1

1.2 Objectifs du projet ........................................................................................................... 4

1.3 Modifications ................................................................................................................... 4

1.4 Méthodologie utilisée ..................................................................................................... 5

2. Travail réalisé ........................................................................................................................... 7

2.1 Description du cyclone .................................................................................................... 7

2.2 Recherche bibliographique.............................................................................................. 9

2.2.1 Les différents modèles de perte de charge ............................................................. 9

Voici les principaux modèles de calcul pour la perte de charge : ........................................... 9

2.2.2 Les modğles d'efficacitĠ (en termes de diamğtre de coupure)............................. 11

Voici les diffĠrents modğles d'efficacitĠ :.............................................................................. 11

2.2.3 Calculs VS Experimentation. .................................................................................. 11

Il y a une variation entre les résultats expérimentaux et le théoriques tel que : ................ 11

2.3 L'effet du chargement de poussiğre ............................................................................. 12

2.3.1 Théorie de la limite critique de chargement ......................................................... 12

2.3.2 ThĠorie de l'agglomĠration ................................................................................... 12

2.3.3 Faits intéressants observés. .................................................................................. 13

Voici une liste des faits observés par différents chercheurs au cours des années : ............. 13

2.4 Simulations numériques ................................................................................................ 15

3. Éléments de conception ........................................................................................................ 19

3.1 Discussion ...................................................................................................................... 36

4. Échéancier ............................................................................................................................. 38

iii

CONCEPTION DE SÉPARATEURS CYCLONIQUES

5. Conclusion ............................................................................................................................. 39

6. Recommandations ................................................................................................................. 40

7. RÉFÉRENCES .......................................................................................................................... 41

8. ANNEXE 1 ............................................................................................................................... 42

8.1 ENTRÉE TANGENTIELLE ................................................................................................. 42

8.2 ENTRÉE EN SPIRALE 90° ................................................................................................. 43

8.3 ENTRÉE EN SPIRALE 180° ............................................................................................... 45

8.4 ENTRÉE EN SPIRALE 180° DIVISÉE ................................................................................. 46

8.5 ENTRÉE EN SPIRALE 360° ............................................................................................... 48

8.6 CALCUL DE LA SURFACE INTERNE TOTALE D'UN CYCLONE ........................................... 49

8.6.1 Surface du toit ....................................................................................................... 49

8.6.2 Surface du baril aǀec l'entrĠe d'air ........................................................................ 49

8.6.3 Surface du cône ..................................................................................................... 49

8.6.4 Surface du tube de sortie ...................................................................................... 49

9. Annexe 2 ................................................................................................................................ 50

iv

CONCEPTION DE SÉPARATEURS CYCLONIQUES

Liste des symboles

݂= Facteur de friction [1]

݂ݎ= Facteur de friction pour la rugosité de la paroi [1] ݃с Constante d'accĠlĠration graǀitationnelle de la terre ΀ms-2] ݒ݅݊с Vitesse du gaz ă l'entrĠe ΀ms-1]

ݒݖݓ= Vitesse axiale à la paroi [ms-1]

ݒݔ= Vitesse dans le tube de sortie [ms-1]

ߦ= Ratio ܾ 4

οLܿܿܽ

οLܾ

οLݔ= Perte due au vortex interne et au tube de sortie [Pa] vi

CONCEPTION DE SÉPARATEURS CYCLONIQUES

Liste des figures

Figure 1-1 Composantes principale du cyclone. [10] ...................................................................... 2

Figure 1-2 Cyclone à entrée spiralée. [10]....................................................................................... 2

Figure 1-3 Entrée tangentielle. [10] ................................................................................................ 3

Figure 1-4 Entrée tangentielle avec clapet. ..................................................................................... 3

Figure 1-5 Entrée spiralée 180°. [10] ............................................................................................... 3

Figure 1-6 Entrée spiralée divisée 180°. [10]................................................................................... 3

Figure 1-7 Entrée spiralée 90°. [10] ................................................................................................. 3

Figure 1-8 Entrée spiralée 360°. [10] ............................................................................................... 3

Figure 2-1 Flux interne dans un cyclone. [10] ................................................................................. 7

Figure 2-2 SchĠma d'un cyclone en action. ..................................................................................... 7

Figure 2-3 ModĠlisation d'un cyclone ă entrĠe tangentielle. ....................................................... 16

Figure 2-4 ModĠlisation d'un cyclone ă entrĠe spiralĠe 180Σ. ...................................................... 17

Figure 2-5 ModĠlisation d'un cyclone ă entrĠe spiralĠe diǀisĠe 180Σ. ......................................... 17

Figure 2-6 ModĠlisation d'un cyclone ă double entrĠe spiralĠe 180Σ. ......................................... 18

Figure 2-7 Modélisation du cyclone à entrée tangentielle avec vue juste sous le tube de sortie. 18

Figure3-1 Le schéma de gauche montre les paramètres géométriques du cyclone. Celui de droite

Figure 3-2 Distribution de la vitesse tangentielle sur le diamètre du cyclone. [10]...................... 20

Figure 3-3 Liste des paramètres des différents modèles de cyclones. [10] .................................. 27

Figure 3-4 Silhouette des modèles submentionnée. [10] ............................................................. 28

Figure 3-5 Représentation des pertes de charges du Tableau 14. ................................................ 29

Figure 3-6 Représentation des pertes de charges de l'edžpĠrience 1 du Tableau 15. ................... 31

Figure 3-7 ReprĠsentation des pertes de charges de l'edžpĠrience 2 du Tableau 15. ................... 32

Figure 3-8 Comparaison entre le diamètre de coupure théorique et expérimental du Tableau 16

(classé par auteur). ........................................................................................................................ 34

Figure 3-9 Comparaison entre le diamètre de coupure théorique et expérimental du Tableau 16

(classé par méthode). .................................................................................................................... 35

Figure 8-1 Entrée tangentielle et paramètres. .............................................................................. 42

Figure 8-2 Paramétrage des gĠomĠtries dans l'entrĠe spiralĠe 90 .............................................. 44

Figure 8-3 SchĠma de l'entrĠe spiralĠ 90. ..................................................................................... 44

Figure 8-4 Partie de la paroi manquante. ...................................................................................... 44

Figure 8-5 SchĠma d'une entrĠe d'air spiralĠe 180 ...................................................................... 45

Figure 8-6 Surface interne du baril à entrée spiralée 180 divisé .................................................. 46

Figure 8-7 SchĠma de l'entrĠe diǀisĠe aǀec paramğtres .............................................................. 46

Figure 8-8 SchĠma du petit triangle et de l'entrĠe paramğtrĠ ..................................................... 47

Figure 8-9 SchĠma de l'entrĠe d'air spiralĠe 360 .......................................................................... 48

Figure 9-1 Variables nécessaire Èa la résolution du problème. .................................................... 50

Figure 9-2 Tableau des pertes de charge et du diamètre de coupure calculés. ........................... 51

Figure 9-3 DiffĠrentes courbes d'analyse. ..................................................................................... 51

Figure 9-4 Courbe de la distribution cummulative........................................................................ 52

Figure 9-5 Dimensions du cyclone sélectionné. ............................................................................ 52

1

CONCEPTION DE SÉPARATEURS CYCLONIQUES

Liste des tableaux

Tableau 1 Équations du modèle de Barth-Muschelknautz ........................................................... 21

Tableau 2 Équations du modèle de Chen [1]. ............................................................................... 22

Tableau 3 Équations du modèle de Muschelknautz [10] .............................................................. 23

Tableau 4 Équations du modèle de Muschelknautz [10] (suite 1) ................................................ 24

Tableau 5 Équations du modèle de Muschelknautz [10] (suite 2) ................................................ 25

Tableau 6 Facteur de correction de Briggs .................................................................................... 25

Tableau 7 Équations de Shepherd and Lapple. ............................................................................. 25

Tableau 8 Équation de First. .......................................................................................................... 26

Tableau 10 Équations de Barth ..................................................................................................... 26

Tableau 11 Correction avec Briggs. ............................................................................................... 26

Tableau 12 Formule de Rietena .................................................................................................... 27

Tableau 13 Formule de Lapple ...................................................................................................... 27

Tableau 14 Comparaison expérimentale et théorique des pertes de charge (en Euler) de l'Ġtude

de Cortés [14]. ............................................................................................................................... 29

Tableau 15 Comparaison expérimentale et théorique des pertes de charge (en nombre de Euler)

de l'Ġtude de Chen ΀1΁. .................................................................................................................. 30

de Zhao [11]. .................................................................................................................................. 33

Tableau 17 Comparatif des modèles à utiliser .............................................................................. 36

Tableau 18 Charges de poussières préférentielles selon le modèle ............................................. 36

Tableau 19 Échéancier................................................................................................................... 38

Tableau 20 Surface interne du baril à entrée tangentielle ........................................................... 42

Tableau 21 Surface interne du baril à entrée spiralée 90 ............................................................. 43

Tableau 22 Surface interne du baril à entrée spiralée 180 ........................................................... 45

Tableau 23 Surface interne du baril à entrée spiralée 360 ........................................................... 48

Tableau 24 Équation de surface du toit ........................................................................................ 49

Tableau 26 Équation de la surface du cône .................................................................................. 49

Tableau 27 Équation de la surface du tube de sortie .................................................................... 49

1

CONCEPTION DE SÉPARATEURS CYCLONIQUES

1. Introduction

Cet ouvrage a pour sujet le nettoyeur de gaz à effet centrifuge appelé cyclone. Ce dernier est utilisé comme un séparateur gaz-solide notamment pour le dépoussiérage et comme séparateur gaz-liquide pour le désembuage, qui consiste en soi, à séparer les gouttelettes contenues dans un gaz comme l'air par exemple. Cependant, cette partie du sujet ne sera pas développée davantage, il sera plutôt question du premier type de séparation nommé ci-haut soit, la sĠparation des particules solides dans l'air.

1.1 Problématique

modernes. Ils sont la plupart du temps utilisés pour filtrer les particules de poussière présente dans les gaz. Avec les normes environnementales qui deviennent de plus en plus sévères en ce qui concerne le contrôle de la pollution, il faut savoir capter un comparativement à tout ce qui se fait dans le domaine du dépoussiérage. Aussi, il est tellement simple à construire que son prix est de beaucoup infĠrieur ă n'importe quel système équivalent. Par exemple, il est de cinq à six fois moins dispendieux plus, sa ǀie utile est limitĠe par l'usure de l'acier seulement. Encore une fois, il y a quotesdbs_dbs4.pdfusesText_7