[PDF] PRODUIT SCALAIRE - maths et tiques



Previous PDF Next PDF







Le produit scalaire - mathaapitiorg

Cours de Mathématiques – Classe de Première STI2D – Chapitre 10 : Le produit scalaire Chapitre 10 : Le Produit Scalaire A) Définitions et cas particuliers 1) Rappels a) Norme d'un vecteur La norme d'un vecteur est sa longueur Par exemple, la norme du vecteur ⃗AB est tout simplement la longueur AB, ou encore la distance de A à B



Définition du produit scalaire - Parfenoff org

En utilisant les différentes formes du produit scalaire, déterminer la valeur approchée à 0,1 ° près de l’angle $ # ã Réponse : Comme nous connaissons les coordonnées des points A , B et C , nous allons calculer m n , , , , , , & m o , , , , , & grâce à la forme analytique du produit scalaire



PRODUIT SCALAIRE EXERCICES CORRIGES - Meabilis

PRODUIT SCALAIRE EXERCICES CORRIGES Exercice n° 1 Répondre par VRAI (V) ou FAUX (F) : Question 1 Soient A, B et C trois points distincts du plan a) A, B et C sont alignés si et seulement si : AB AC AB AC⋅ = × b) (AB) et (AC) sont orthogonales si et seulement si AB AC⋅ =0 c) A est le milieu de [BC] si et seulement si : AB AC AB⋅ =−2



Exercices sur le produit scalaire

Droite et produit scalaire d est la droite d’équation : 3x y+ 5 = 0 1)Trouver un vecteur normal à d 2)Trouver une équation de la droite passant par A(1;2) et perpendiculaire à d Exercice 26 : Droite et produit scalaire Dans chacun des cas suivants, dites si les droites d et d0sont perpendiculaires a) d : x 2y+ 4 = 0 et d0: 6x + 3y 7 = 0



PRODUIT SCALAIRE - maths et tiques

PRODUIT SCALAIRE La notion de produit scalaire est apparue pour les besoins de la physique Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877), ci-contre Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853 I Définition et



Correction du DM produits scalaires

donc par produit en croix on a (: = 125 sin(54) sin65)≈140,03 et : = 125 sin(54) sin(61)≈135,14 40P237 2) d’après la relation d’al kashi



La classe de 1ère STI2D - Soutien scolaire Anacours

A - Produit scalaire dans le plan : - Projection orthogonale d’un vecteur sur un axe - Définition et propriétés du produit scalaire de deux vecteurs dans le plan - Applications du produit scalaire B - Nombres complexes : - Forme algébrique : somme, produit, quotient, conjugué - Représentation géométrique



1ère STI2D – Liens dans le programme PC / Mathématiques

1ère STI2D – Liens dans le programme P C / Mathématiques En physique En mathématiques Partie du programme Liens avec les maths Partie du programme Liens avec la Notions et contenu Capacités exigibles Physique-Chimie Italique : Activités expérimentales Contenus : - T C (Tronc Commun) Violet -> - spé (spécialité) Capacités



Correction Livre De Math 1ere Sti2d Foucher

Download Ebook Correction Livre De Math 1ere Sti2d Foucher Correction Livre De Math 1ere Sti2d Foucher 165380609 livre-professeur-maths-1ere-s Correction livre de maths 1ere d - Aide Afrique TÉLÉCHARGER CORRIGE LIVRE DE MATHS CIAM 1ERE SM GRATUITEMENT 1S-Transmath : le livre EXERCICES CORRIGÉS DE MATHS : correction des exos de ton



Cinématique 1: vitesse et accélération instantanées

Dans cette dernière formule, le point désigne le produit scalaire Le carré scalaire est égal au carré de la norme (voir Formulaires et tables p 48 et 49) § 1 3 Accélération Variation de vitesse 1-cinematique nb 7 Printed by Wolfram Mathematica Student Edition

[PDF] comment resoudre un systeme dans c

[PDF] système nombre complexe

[PDF] résolution équation complexe

[PDF] système d'équation

[PDF] comment faire un plan de mémoire pdf

[PDF] equivalence maths limites

[PDF] équivalent en l'infini

[PDF] fonction négligeable

[PDF] fonction equivalente exponentielle

[PDF] exercice nombre complexe type bac sti2d

[PDF] triangle rectangle 3 cotés consécutifs

[PDF] nombres croisés explication

[PDF] 80 jeux de maths pour le cycle 3

[PDF] qui sont les croisés

[PDF] croisés templiers

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPRODUIT SCALAIRE La notion de produit scalaire est apparue pour les besoins de la physique. Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877), ci-contre. Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853. I. Définition et propriétés 1) Norme d'un vecteur Définition : Soit un vecteur

u et deux points A et B tels que u =AB . La norme du vecteur u , notée u , est la distance AB. 2) Définition du produit scalaire Définition : Soit u et v deux vecteurs du plan. On appelle produit scalaire de u par v , noté u .v , le nombre réel définit par : - u .v =0 , si l'un des deux vecteurs u et v est nul - u .v =u ×v

×cosu

;v , dans le cas contraire. u .v se lit " u scalaire v ". Remarque : Si AB et AC sont deux représentants des vecteurs non nuls u et v alors : u .v =AB .AC =AB

×AC

×cosBAC

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frExemple : Vidéo https://youtu.be/CJxwKG4mvWs Soit un triangle équilatéral ABC de côté a.

AB .AC =AB

×AC

×cosBAC

=a×a×cos60° =a 2

×0,5

a 2 2 Attention : Le produit scalaire de deux vecteurs est un nombre réel. Ecrire par exemple u .v =0

est une maladresse à éviter ! 3) Propriété de symétrie du produit scalaire Propriété : Pour tout vecteur

u et v , on a : u .v =v .u

Démonstration : On suppose que

u et v sont non nuls (démonstration évidente dans la cas contraire). u .v =u ×v

×cosu

;v =v ×u

×cosu

;v =v ×u

×cos-v

;u =v ×u

×cosv

;u =v .u

4) Opérations sur les produits scalaires Propriétés : Pour tous vecteurs

u v et w , on a : 1) u .v +w =u .v +u .w 2) u .kv =ku .v , avec k un nombre réel. - Admis -

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 5) Identités remarquables Propriétés : Pour tous vecteurs

u et v , on a : 1) u +v 2 =u 2 +2u .v +v 2 2) u -v 2 =u 2 -2u .v +v 2 3) u +v u -v =u 2 -v 2

Démonstration pour le 2) :

u -v 2 =u -v u -v =u .u -u .v -v .u +v .v =u 2 -2u .v +v 2

II. Produit scalaire et norme Soit un vecteur

u , on a : u .u =u ×u

×cosu

;u =u 2

×cos0=u

2 et u .u =u 2

On a ainsi :

u 2 =u .u =u 2

Propriété : Soit

u et v deux vecteurs. On a : u .v 1 2 u 2 +v 2 -u -v 2 et u .v 1 2 u +v 2 -u 2 -v 2

Démonstration de la première formule :

u -v 2 =u -v 2 =u 2 -2u .v +v 2 =u 2 -2u .v +v 2 donc u .v 1 2 u 2 +v 2 -u -v 2

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPropriété : Soit A, B et C trois points du plan. On a :

AB .AC 1 2 AB 2 +AC 2 -BC 2

Démonstration :

AB .AC 1 2 AB 2 +AC 2 -AB -AC 2 1 2 AB 2 +AC 2 -CB 2 1 2 AB 2 +AC 2 -BC 2

Exemple : Vidéo https://youtu.be/GHPvfaHnysg

CG .CF 1 2 CG 2 +CF 2 -GF 2 1 2 6 2 +7 2 -3 2 =38 III. Produit scalaire et orthogonalité 1) Vecteurs orthogonaux Propriété : Les vecteurs u et v sont orthogonaux si et seulement si u .v =0

. Démonstration : Si l'un des vecteurs est nul, la démonstration est évidente. Supposons le contraire.

u .v =0 ⇔u ×v

×cosu

;v =0 ⇔cosu ;v =0

Les vecteurs

u et v sont orthogonaux

5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 2) Projection orthogonale Définition : Soit une droite d et un point M du plan. Le projeté orthogonal du point M sur la droite d est le point d'intersection H de la droite d avec la perpendiculaire à d passant par M. Propriété : Soit

u et v deux vecteurs non nuls du plan tels que u =OA et v =OB . H est le projeté orthogonal du point B sur la droite (OA). On a : u .v =OA .OB =OA .OH

Démonstration :

OA .OB =OA .OH +HB =OA .OH +OA .HB =OA .OH

En effet, les vecteurs

OA et HB sont orthogonaux donc OA .HB =0 . Exemple : Vidéo https://youtu.be/2eTsaa2vVnI Soit un carré ABCD de côté c. AB .AC =AB .AB =AB 2 =c 2 IV. Produit scalaire dans un repère orthonormé Le plan est muni d'un repère orthonormé O;i ;j . Propriété : Soit u et v deux vecteurs de coordonnées respectives x;y et x';y' . On a : u .v =xx'+yy' . Démonstration : u .v =xi +yj .x'i +y'j =xx'i .i +xy'i .j +yx'j .i +yy'j .j =xx'i 2 +xy'i .j +yx'j .i +yy'j 2 =xx'+yy' car i =j =1 , le repère étant normé, et i .j =j .i =0

le repère étant orthogonal. Exemple : Vidéo https://youtu.be/aOLRbG0IibY Vidéo https://youtu.be/cTtV4DsoMLQ Soit

u 5;-4 et v -3;7 deux vecteurs. u .v =5×-3 +-4

×7=-15-28=-43

quotesdbs_dbs41.pdfusesText_41