[PDF] REPRÉSENTATIONS PARAMÉTRIQUES ET ÉQUATIONS CARTÉSIENNES



Previous PDF Next PDF







Vecteurs, droites et plans dans l’espace - Lycée dAdultes

Définition 3 : Combinaison linéaire de deux vecteurs On appelle combinaison linéaire de deux vecteurs~u et~v, le vecteur ~w tel que : ~w =a~u+b~v avec a,b ∈R Les vecteurs~u,~v et ~w sont alors coplanaires ~u ~v a~u b~v ~w 2 2 Colinéarité Définition 4 : Deux vecteurs~u et~v sont colinéaires si, et seulement si, il existe



Intersection de deux droitesIntersection de deux droites

Feb 06, 2021 · Terminale – spécialité mathématique − 2020 / 21 G3 − cours Intersection de deux droitesIntersection de deux droites Dans l’espace, deux droites et ’ de vecteurs directeurs Åu et Åu’ peuvent être :



350re S - Vecteurs et droites - ChingAtome

1 Donner les coordonnées d’un vecteur directeur et d’un point de chaque droite 2 Représenter dans le graphique ci-dessous les deux droites (d1) et (d2) -4 -3 -2 -1 2 3 4I-1 2 3 4 J O 3 Déterminer les coordonnées du point d’intersection des deux droites (d1) et (d2) Exercice réservé 5338 Dans le plan muni d’un repère (O; i



Vecteurs, droites et plans de l’espace

3/7 Position relative de deux droites Exercice 7 : II 2 Plans de l’espace Soient A un point de l’espace et ⃗u et ⃗v deux vecteurs non colinéaires de l’espace L’ensemble des points M tels que AM⃗ =λ⃗u+μ⃗v est un plan de l’espace



PRODUIT SCALAIRE - AlloSchool

Définition : Soit une droite d et un point M du plan Le projeté orthogonal du point M sur la droite d est le point d'intersection H de la droite d avec la perpendiculaire à d passant par M Propriété : Soit u et v deux vecteurs non nuls du plan tels que u OA et v OB H est le projeté orthogonal du point B sur la droite (OA) On a : uv



REPRÉSENTATIONS PARAMÉTRIQUES ET ÉQUATIONS CARTÉSIENNES

2) Déterminer une représentation paramétrique de leur droite d'intersection d 1) P et P' sont sécants si leurs vecteurs normaux ne sont pas colinéaires Un vecteur normal de P est P*⃗-



Vecteurs - Exercices 1 Translation et vecteurs associés

Vecteurs - Exercices 1 Translation et vecteurs associés Exercice 1 À partir de la gure ci-dessous, 1 Donner les images des points C, D et E par la translation de vecteur AB 2 Citer trois vecteurs égaux au vecteur AB 3 Citer les trois parallélogrammes de nis par les égalités vectorielles de la question précédente Exercice 2



351 - Vecteurs, droites, plans dans lespace - ChingAtome

2 Position elative : (+2 exercices ourp les enseignants) Exercice 6816 On considère le cube ABCDEFGH représenté ci-dessous: A B C D E F G H 1 Donner la



chaPitre 9 Produit scalaire dans l’espace

d’intersection d’un point de vue algébrique L’objectif est de rendre les élèves capables d’étudier des problèmes d’intersection de droites et de plans, en choisissant un cadre adapté, vectoriel ou non, repéré ou non Contenus Capacités attendues Commentaires Produit scalaire Produit scalaire de deux vecteurs dans l’espace:

[PDF] point d'intersection definition

[PDF] point d'intersection des hauteurs d'un triangle

[PDF] point d'intersection des médianes d'un triangle

[PDF] point d'intersection des médiatrices d'un triangle

[PDF] point d'intersection fonction

[PDF] point d'intersection geometrie

[PDF] point d'orgue définition larousse

[PDF] point d'orgue expression

[PDF] point d'orgue musique

[PDF] point d'orgue pluriel

[PDF] Point dans la cible utilisation tableur

[PDF] point de congélation de l'eau

[PDF] point de contact tangente

[PDF] point de pourcentage abréviation

[PDF] point de pourcentage calcul

1

REPRÉSENTATIONS PARAMÉTRIQUES

ET ÉQUATIONS CARTÉSIENNES

Le cours en vidéo : https://youtu.be/naOM6YG6DJc Partie 1 : Représentation paramétrique d'une droite Propriété : L'espace est muni d'un repère !;⃗,⃗, Soit une droite passant par un point et de vecteur directeur ⃗

On a :

∈⟺ Il existe un réel tel que Ce système s'appelle une représentation paramétrique de la droite .

Démonstration :

∈⟺ ⃗ et sont colinéaires ⟺Il existe un réel tel que

Exemple :

La droite passant par le point

1 -2 3 et de vecteur directeur ⃗ 4 5 -3 a pour représentation paramétrique : =1+4 =-2+5 =3-3 Méthode : Utiliser la représentation paramétrique d'une droite

Vidéo https://youtu.be/smCUbzJs9xo

Soit les points

2 3 -1 et 1 -3 2

Déterminer les coordonnées du point d'intersection de la droite () avec le plan de repère

2

Correction

- On commence par déterminer une représentation paramétrique de la droite () : Un vecteur directeur de () est : 1-2 -3-3 2- -1 -1 -6 3 La droite () passe par le point 2 3 -1 Une représentation paramétrique de () est : =2- =3-6 =-1+3 - Soit le point d'intersection de la droite () avec le plan de repère Alors =0 car appartient au plan de repère

Donc -1+3=0 soit =

Et donc :

=2- 1 3 5 3 =3-6× 1 3 =1 =0

Le point a donc pour coordonnées Q

5 3 1 0 R.

Partie 2 : Équation cartésienne d'un plan

Propriété : L'espace est muni d'un repère orthonormé !;⃗,⃗,

Un plan de vecteur normal ⃗ non nul admet une équation de la forme +++=0, avec ∈ℝ.

Réciproquement, si , et sont non tous nuls, l'ensemble des points

tels que +++=0, avec ∈ℝ, est un plan. Cette équation s'appelle équation cartésienne du plan .

Démonstration au programme :

Vidéo https://youtu.be/GKsHtrImI_o

- Soit un point de . et ⃗ sont orthogonaux .⃗=0 =0 3 =0 ⟺+++=0 avec =-

- Réciproquement, supposons par exemple que ≠0 (, et sont non tous nuls).

On note E l'ensemble des points

vérifiant l'équation +++=0

Alors le point Q

0 0 R vérifie l'équation +++=0. Et donc ∈E.

Soit un vecteur ⃗

. Pour tout point , on a : .⃗=V+

W+

-0 -0

E est donc l'ensemble des points

tels que .⃗=0. Donc l'ensemble E est le plan passant par et de vecteur normal ⃗.

Exemple : Le plan d'équation cartésienne -+5+1=0 a pour vecteur normal ⃗

1 -1 5 Méthode : Déterminer une équation cartésienne de plan

Vidéo https://youtu.be/s4xqI6IPQBY

Dans un repère orthonormé, déterminer une équation cartésienne du plan passant par le

point -1 2 1 et de vecteur normal ⃗ 3 -3 1

Correction

Une équation cartésienne de est de la forme 3-3++=0. Le point appartient à donc ses coordonnées vérifient l'équation : 3× -1 -3×2+1+=0 donc =8. Une équation cartésienne de est donc : 3-3++8=0. Propriété : Deux plans sont perpendiculaires lorsqu'un vecteur normal de l'un est orthogonal

à un vecteur normal de l'autre.

4 Méthode : Démontrer que deux plans sont perpendiculaires

Vidéo https://youtu.be/okvo1SUtHUc

Dans un repère orthonormé, les plans et ′ ont pour équations respectives :

2+4+4-3=0 et 2-5+4-1=0.

Démontrer que les plans et ′ sont perpendiculaires.

Correction

Les plans et ′sont perpendiculaires si et seulement si un vecteur normal de l'un est

orthogonal à un vecteur normal de l'autre. Un vecteur normal de est ⃗ 2 4 4 et un vecteur normal de ′est ′ 2 -5 4 =2×2+4× -5 +4×4=0

Les vecteurs ⃗ et ′

sont orthogonaux donc les plans et ′sont perpendiculaires.

Partie 3 : Applications

Méthode : Déterminer l'intersection d'une droite et d'un plan

Vidéo https://youtu.be/BYBMauyizhE

Dans un repère orthonormé, le plan a pour équation 2-+3-2=0.

Soit

1 2 -3 et -1 2 0 a) Démontrer que la droite () et le plan sont sécants. b) Déterminer leur point d'intersection.

Correction

a) Un vecteur normal de est ⃗ 2 -1 3 () et sont sécants si ⃗ et ne sont pas orthogonaux.

On a :

-2 0 3

Comme :

.⃗=-2×2+3×3≠0, on conclut que () et le plan ne sont pas

parallèles et donc sont sécants. b) Une représentation paramétrique de la droite () est : =1-2 =2 =-3+3 5

Le point

, intersection de () et de , vérifie donc le système suivant : Z =1-2 =2 =-3+3

2-+3-2=0

On a donc : 2

1-2

-2+3 -3+3 -2=0

5-11=0 soit =

D'où :

=1-2× 11 5 17 5 =2 =-3+3× 11 5 18 5 Ainsi la droite () et le plan sont sécants en 17 5 2 18 5 Méthode : Déterminer les coordonnées du projeté orthogonal d'un point sur une droite

Vidéo https://youtu.be/RoacrySlUAU

Dans un repère orthonormé, on donne les points 1 0 2 -1 2 1 et 0 1 -2

Déterminer les coordonnées du projeté orthogonal du point sur la droite ().

Correction

On appelle le projeté orthogonal du point sur la droite ().

On a :

-2 2 -1 Une représentation paramétrique de () est : =1-2 =2 =2-

Le point appartient à la droite () donc ses coordonnées vérifient les équations du

système paramétrique de ().

On a ainsi :

1-2

2

2-

et donc

1-2

2-1

2-+2

1-2

2-1

4-

Or,

et sont othogonaux, donc : =0

1-2

-2

2-1

×2+

4-

-1 =0 -2+4+4-2-4+=0

9-8=0

6 8 9

Le point , projeté orthogonal du point sur la droite (), a donc pour coordonnées :

1-2×

8 9 2× 8 9 2- 8 9 7 9 16 9 10 9 Méthode : Déterminer l'intersection de deux plans - NON EXIGIBLE -

Vidéo https://youtu.be/4dkZ0OQQwaQ

Dans un repère orthonormé, les plans et ′ ont pour équations respectives :

-+2+-5=0 et 2-+3-1=0.

1) Démontrer que les plans ′ sont sécants.

2) Déterminer une représentation paramétrique de leur droite d'intersection .

Correction

1) et′ sont sécants si leurs vecteurs normaux ne sont pas colinéaires.

Un vecteur normal de est ⃗ -1 2 1 et un vecteur normal de ′est ′ 2 -1 3 Les coordonnées des deux vecteurs ne sont pas proportionnelles donc les vecteurs ne sont pas colinéaires.

2) Le point

de , intersection de et de ′, vérifie donc le système suivant : i -+2+-5=0

2-+3-1=0

On choisit par exemple comme paramètre et on pose =. On a alors : -+2+-5=0

2-+3-1=0

=-2++5 -+3=1-2 =-2++5 -+3 -2++5 =1-2 =-2++5 --6+3+15=1-2 =-2++5 -7=-14-5 =2+ 5 7 =-2 V 2+ 5 7 W ++5 =2+ 5 7 =1- 3 7 Ce dernier système est une représentation paramétrique de , avec ∈ℝ. 7 RÉSUMÉ : Pour démontrer des positions relatives droite de vecteur directeur ⃗. plan de vecteur normal ⃗. et sont... parallèles ⃗.⃗=0 sécants orthogonaux ⃗ et ⃗ colinéaires plan de vecteur normal plan de vecteur normal et sont... parallèles ⃗ et ⃗ colinéaires sécants ⃗ et ⃗ non colinéaires perpendiculaires ⃗=0quotesdbs_dbs48.pdfusesText_48