[PDF] EE320 LAB EXERCISE  “Power Factor Correction” Name: Partner(s):



Previous PDF Next PDF







Induction et forces de Laplace Correction

PCSI – Induction et forces de Laplace Fiche Exercice n°25 Exercice 1 : Spire en rotation Correction Lois de l’induction



EE320 LAB EXERCISE  “Power Factor Correction” Name: Partner(s):

EE320 LAB EXERCISE #3 “Power Factor Correction” Name: _____ _____ Partner(s): _____ _____ Problem: In this exercise, we will further investigate performing power factor correction on a single-phase induction motor load Emphasis is on making correct calculations and taking measurements to confirm the theory



TD15:Inductionélectromagnétique–corrigé Exercice7

TSI1–Physique-chimie TD15:Inductionélectromagnétique–corrigé TD15:Inductionélectromagnétique–corrigé Exercice1:Fluxd’unchampmagnétique



Induction et forces de Laplace Correction

PCSI – Induction et forces de Laplace Fiche Exercice n°26 Exercice 1 : Spires voisines Exercice 2 : Bobines en séries Correction Circuit fixe dans champ variable ????ሬሬԦ(????)



Recursive Algorithm Correctness (Continued)

Induction Step: Let n > 1 and suppose postcondition holds after execution for all inputs of size k that satisfy precondition, for 1 k < n (IH) Consider call RecBSearch(x,A,s,f) when f +1 s = n 2 Test on line 2 fails, so s < f (since s f by precondition and s 6= f by negation of test) and algorithm executes line 9 Next, test on line 10 executes



ELECTROMAGNETISME - TRAVAUX DIRIGES n° 2

sinusoïdal génère ce champ Le transfert d’énergie électrique s’effectue par induction mutuelle entre ce bobinage et le fond de casserole circulaire assimilé, pour simplifier, à une spire unique fermée sur elle-même L’inducteur comporte 20 spires de cuivre de résistance électrique R 1 = 1,8 10-2 et d’auto-inductance L 1 = 30



Unit 4 AC Induction Motors - siteiugazaedups

AC Induction Motors 4-3 Figure 4-3 Closing a Ladder Upon Itself Forms a Squirrel Cage To make it easier for the magnetic flux to circulate, the rotor of a squirrel-cage induction motor is placed inside a laminated iron cylinder The stator of the induction motor acts as a rotating electromagnet The rotating electromagnet causes torque



Exercices et cours de Sciences PhysiquesEpreuves BACCALAUREATS

Author: user Created Date: 1/3/2017 7:18:52 PM



TD14:ChampmagnétiqueetforcedeLaplace–corrigé Exercice4

TSI1–Physique-chimie TD14:ChampmagnétiqueetforcedeLaplace–corrigé Exercice8:Oscillationsd’unaimant 1 L’aimantétantéquivalentàunmomentmagnétique

[PDF] propulsion fusée quantité de mouvement

[PDF] propulsion par réaction

[PDF] force de pression sur une paroi courbe

[PDF] force de pression sur une paroi plane tp

[PDF] force de pression sur une paroi inclinée

[PDF] force hydrostatique sur une surface courbe

[PDF] force de poussée hydrostatique

[PDF] force hydrostatique appliquée sur une paroi verticale plane

[PDF] quelle valeur ajoutée pensez vous pouvoir apporter

[PDF] décrivez votre personnalité exemple

[PDF] force de proposition synonyme

[PDF] force de proposition définition

[PDF] brochure kadjar pdf

[PDF] brochure kadjar france

[PDF] jantes alliage 19 extreme

1

EE320 LAB EXERCISE #3

"Power Factor Correction" Name: _______________ ______ Partner(s): _________________ _____ Problem: In this exercise, we will further investigate performing power factor correction on a single-phase induction motor load. Emphasis is on making correct calculations and taking measurements to confirm the theory. Step 1: Build the circuit shown in EITHER Figure 1a (if you have the AEMC 3945-B power analyzer) or Figure 1c (if you have the PM300 power analyzer) using the EMS8821 power supply, the EMS8251 capacitor-start motor module, the power analyzer, and connection cabling. THE POWER SUPPLY SHOULD REMAIN OFF. Figure 1a: Main Circuit Connections (with AEMC 3945-B power analyzer) Recall that the menu settings for the AEMC power analyzer are controlled as follows Figure 1b: Front Panel Control Buttons for AEMC 3945-B 2 Figure 1c: Main Circuit Connections (with PM300 power analyzer) Step 2: Confirm that the dynamometer is coupled to the motor with a timing belt and that the dynamometer is connected to the 24V AC power supply. Ensure that the dynamometer is set as follows:

Dynamometer mode (versus prime mover)

Manual

Manual knob full CCW (zero torque)

Toggle switch set to display torque

HAVE THE INSTRUCTOR VERIFY YOUR SETUP: ____________________

Step 3: Energize the 24V

AC power supply and the main power supply switch. The motor should be running. Toggle the switch on the dynamometer so you can read the motor speed and the applied load torque (confirm that it is zero). rpm

N______________

Nm

T______________

Record the voltage, current, and power displayed by the power analyzer.

V______________ I______________ P______________

TURN OFF THE AC POWER SUPPLY

3 Step 4: Calculate the apparent power, reactive power, and power factor (show the equation you used in the first blank) S________________________________ = ______________ Q________________________________ = ______________ pf________________________________ = ______________ Step 5: Our initial goal is to power factor correct the system to unity. For 1pf, what is the required new power factor angle ,pf des

What is the required plant reactive power

Plant

Q (where the plant consists of both

the induction motor load and the capacitor bank)? Knowing the reactive power of the induction motor, determine the required reactive power of the capacitor bank C Q What is the electrical angular frequency of the system?

What is the required capacitance?

Compute the anticipated magnitude of power supply current (use S) 4 Step 6: Using the two EMS8331 variable capacitance modules at your workstation (shown in Figure 2) and only parallel connections, implement the value closest to the required capacitance found in the previous step. Recall, a switch UP means the capacitor is in the circuit. Indicate the capacitor value you are implementing: ____________

Figure 2: Variable Capacitance Module

HAVE THE INSTRUCTOR VERIFY YOUR VALUE: ____________________

Step 7: Run the experiment

Connect the top of the capacitor bank to terminal 2 of the induction motor. Connect the bottom of the capacitor bank to terminal 1 of the induction motor.

Energize the 24V

AC supply and the main power supply. The motor should be spinning. Collect the following data (ensure you scale the values for the AEMC analyzer)

V______________ I______________ P______________

De-energize the power supply

Compute the following

S________________________________ = ______________ Q________________________________ = ______________ pf________________________________ = ______________

Are Q and I close to their anticipated values?

5 Step 8: We next wish to modify the capacitance to achieve 0.7pf lagging.

What is the required new power factor angle

,pf des

What is the required plant reactive power

Plant

Q (where the plant consists of both

the induction motor load and the capacitor bank)? Knowing the reactive power of the induction motor, determine the required reactive power of the capacitor bank C Q

What is the required capacitance?

Compute the anticipated magnitude of power supply current Step 9: Modify the settings of the two EMS8331 variable capacitance modules at your workstation to implement the value closest to the required capacitance found in the previous step. Indicate the capacitor value you are implementing: ____________ HAVE THE INSTRUCTOR VERIFY YOUR VALUE: ____________________ 6

Step 10: Run the experiment

Energize the 24V

AC supply and the main power supply. The motor should be spinning.

Collect the following data

V______________ I______________ P______________

De-energize the power supply

Compute the following

S________________________________ = ______________ Q________________________________ = ______________ pf________________________________ = ______________

Are Q and I close to their anticipated values?

Follow-Up Calculations:

1. If you wish to achieve a power supply current of 3A

RMS , what would be the required capacitor value? 7 2. What would be the capacitance required to achieve a 0.85 LEADING power factor and what would be the resultant current magnitude?quotesdbs_dbs6.pdfusesText_12