[PDF] TD1–Continuitédesfonctionsdeplusieursvariablesréelles Exercice1



Previous PDF Next PDF







Exercices avec solutions : LIMITE ET CONTINUITE

Exercices avec solutions : Limite et continuité Exercices d’applications et de réflexions PROF : ATMANI NAJIB 2BAC BIOF : PC et SVT Exercice1 : Déterminer les limites suivantes : 1) 1 ² 3 1 lim x 21 x o x 2) lim 2 432 x x x x o f 3) 24 23 2 5 7 lim x 10 14 x x x o f x x x 4) 25 26



Exo7 - Exercices de mathématiques

1 La fonction est définie sur R t elle est continue sur R Il faut déterminer un éventuel prolongement par continuité en x =0, c’est-à-dire savoir si f a une limite en 0 jf(x)j=jsinxjjsin1=xj6jsinxj: Donc f a une limite en 0 qui vaut 0 Donc en posant f(0)=0, nous obtenons une fonction f : R R qui est continue



Série dexercices Math corrigés

3 La fonction f est – elle prolongeable par continuité en 1 ? si oui définir ce prolongement Exercice n°5 : On considère la fonction f définie par : 2 1 431 xa fx xxx + =+-+- 1 Déterminer l’ensemble de définition de f 2 a) Déterminer a pour que f admette un prolongement par continuité en 1 b) Définir dans ce cas ce



TD 11 Limites et continuité des fonctions - heb3org

Prolongement par continuité Exercice 14 : Dans les exercices sur les suites de nombres réels, on a montré que pour tout réel x, il existe une suite de nombres



TD 22 Développements limités - heb3org

(Q 2) Montrer que f est prolongeable par continuité en 0 On note encore f le prolongement (Q 3) Démontrer que f est de classe C1 sur R Utiliser un développement limité pour obtenir une limite, un équivalent Exercice 8 : [corrigé] Calculer les limites suivantes : (Q 1) lim x→0 ln(1+x)−sinx x; (Q 2) lim x→0 1 x2 − 1 sin2(x) ; (Q



TD :Exercices: LIMITE ET CONTINUITE

prolongement par continuité de la fonction de en -1 4- Peut-on prolonger par continuité en = −2 Exercice17 : Soit une fonction définie par fx 1 cos x x Donner un prolongement par continuité de la fonction en x 0 0 Exercice 18 :Soit la fonction ℎ définie par xx²6 hx x E x (???? désigne la partie entière)



Exercice 1 Corrig´e

Prolongement par densit´e Soient fet gdeux fonctions d´efinies et continues sur R Montrer que (x∈ Q ⇒f(x) = g(x)) ⇒ f= g Corrig´e On va utiliser que Q est dense dans R (voir d´emonstration plus loin) et que f et gsont continues sur R Soit x∈ R il existe une suite (x n) ⊂ Q telle que x n→ x Par continuit´e de fet gon a lim n



Exercice 1

Feuille d’exercices num ero 2 : Fonctions de plusieurs variables, limites et continuit e par suite elle n’admet pas de prolongement par continuit e en l



TD1–Continuitédesfonctionsdeplusieursvariablesréelles Exercice1

Polytech’Paris-UPMC Agral3,2016-2017 TD1–Continuitédesfonctionsdeplusieursvariablesréelles Exercice1 Étudierlacontinuitédesfonctionssuivantes: f(x,y) = x 2



Feuille d’exercices n˚11 : corrigé

Commençons par constater que lim x→0− f′ 1(x) = 0 (par croissance comparée, lim x→0− e1 x x2 = 0, et il ne reste ensuite qu’un facteur x−1 x+1 ex qui tend vers 1), donc d’après le théorème du prolongement de la dérivée, f1 est dérivable à gauche en 0 et sa courbe représentative y admet une tangente horizontale

[PDF] prolongement par continuité exercices corrigés pdf

[PDF] Prolongements

[PDF] Prolonger un poème engagé

[PDF] promath correction

[PDF] prombleme a mettre en equoition

[PDF] Promenade a bicyclette

[PDF] promenade de Mathias

[PDF] Promenade matinale colette c'est ? rendre demain

[PDF] promenade matinale colette question reponse

[PDF] promenade matinale colette reponse

[PDF] Promenade matinale Sujet de réflexion

[PDF] promesse de l'aube pdf

[PDF] promesse de vente entre particulier

[PDF] promise at dawn

[PDF] Promotion

Polytech" Paris - UPMC Agral 3, 2016 - 2017

TD1 - Continuité des fonctions de plusieurs variables réelles Exercice 1.Étudier la continuité des fonctions suivantes : f(x,y) =( x2-y2x

2+y2(x,y)?= (0,0)

0sinong(x,y) =(

y3(x-1)2+y2(x,y)?= (1,0)

0sinon

h(x,y) =( xln(1+x3)y(x2+y2)(x,y)?= (0,0)

0sinonk(x,y) =(

6x2yx

2+y2(x,y)?= (0,0)

0sinon

Solution. On rappelle que pour étudier la continuité d"une fonctionfsur un point il faut : - vérifier si la limite defau pointx0existe et, si elle existe, la calculer; - vérifier si la valeur de la limite est égal àf(x0). On rappelle que si une fonction dpvfest continue au point(x0,y0)alors toute restriction def à courbes continues qui passent pour le point(x0,y0)est continue au point(x0,y0). Donc une stratégie pour prouver que une fonctionfN"EST PAS CONTINUE au point(x0,y0) est trouver deux courbes continuesy=h1(x),y=h2(x)telles quey0=h1(x0)ety0=h2(x0) qui conduisent à deux valeurs différentes de la limite. La fonctionf(x,y)est continue surR2\ {0,0}parce que elle est quotient de polynômes. Pour montrer que elle est pas continue au point(0,0)on considére les axesx= 0ety= 0(qui évidement passent pour (0,0)) et on calculef(x,0)etf(0,y)(restriction defaux axes). On a pour toutx?= 0: f(x,0) =x2x 2= 1, et pour touty?= 0: f(0,y) =y2y 2=-1. La limite d"une constante est la constante, donc : lim x→0f(x,0) = 1etlimy→0f(0,y) =-1. Doncfn"admet pas de limite en(0,0)et elle ne peut pas être continue en(0,0). La fonctiong(x,y)est continue surR2\ {1,0}parce que elle est quotient de polynômes. Pour montrer que elle est continue au point(1,0)on utilise le théorème du pincement (dit aussi des gendarmes ou du sandwich). Dans le cas special dont on cherche une valeur nulle de la limite, ce théorème nous dit que il suffit majorer (en valeur absolue, au voisinage du point(1,0)) la fonctiongavec une fonction qui admet limite zero au même point. Attention : si la limite est non nulle, il ne suffit pas de montrer la majoration pour la valeur absolue deg!

A partir de la simple inégalité :

(x-1)2+y2≥y2, on a : 2 qui permet de encadrerg:

2|=|y|

1 entre la fonction nulle (qui a limite 0 pour toute valeur de(x,y)) et la fonction|y|( qui admet limite0pour toute(x,y)→(1,0)). On a démontré que : lim (x,y)→(1,0)y

3(x-1)2+y2= 0

et donc l"esemble de continuité degestR2. La fonctionh(x,y)est continue surR2\{0,0}parce que elle est quotient de fonctions continues. Comme on a fait pour la fonctionf, pour montrer que elle n"est pas continue au point(0,0)on cherche deux directions qui conduisent à deux limites différentes. On considèrey=xety=x2 ( qui passent pour(0,0)).

On trouve :

h(x,x) =xln(1 +x3)2x3 et h(x,x2) =ln(1 +x3)x

3(1 +x2).

On rappelle la limite usuelle :

lim t→0ln(1 +t)t = 1.

Cette limite usuelle se calcule en 1 passage si on écrit le polynôme de Taylor du dénominateur

au voisinage det= 0(essayer!). Par consequence en posantt=x3on a : lim x→0h(x,x) = limx→0xln(1 +x3)2x3= 0. et lim x→0h(x,x2) = limx→0ln(1 +x3)x

3(1 +x2)= 1.

Doncfn"admet pas de limite en(0,0)et elle ne peut pas être continue en(0,0). La fonctionk(x,y)est continue surR2\ {0,0}parce que elle est quotient de polynômes. Pour montrer que elle est continue au point(0,0)on utilise le théorème du pincement en suivante

exactement le même raisonnement que on a fait pour la fonctiong. A partir de la simple inégalité :

x

2+y2≥x2,

on a : 1x 2 qui permet de encadrerk:

0<|6x2yx

2|= 6|y|

entre la fonction nulle (qui a limite 0 pour toute valeur de(x,y)) et la fonction6|y|( qui admet limite0pour toute(x,y)→(1,0)). On a démontré que : lim (x,y)→(1,0)6x2yx

2+y2= 0

et donc l"esemble de continuité dekestR2. 2

Exercice 2.Soit

f(x,y) =( x2yx

4+y2(x,y)?= (0,0)

0sinon

Montrer que la restriction defà toute droite passante par(0,0)est continue, maisfn"est pas continue au point(0,0). Solution. Le but de l"exercise est de souligner que il suffit pas de montrer que une fonction est continue "restreinte sur le droites" pour déduire que elle est continue sur un point. Soity=mxune droite pour l"origine de coefficient angulairem. On trouve : f(x,mx) =mxx 2+m qui tend vers 0 si(x,y)→(0,0)pour toutm. De plus le longx= 0on trouve limite0.

Si on considère une paraboley=ax2on trouve :

lim (x,y)→(0,0)f(x,ax2) =a1 +a2 Et donc pour chaqueaon a une limite différente. Par consequence la limite n"existe pas. Exercice 3.Montrer que la fonctionf:R2\(0,0)→Rdéfinie par f(x,y) =sin(x2)-sin(y2)x 2+y2 n"est pas prolongeable par continuité en(0,0). Solution. On procède comme dans l"exercise 1. On considère cette fois les axesx= 0ety= 0, qui évidement passent pour(0,0). On a : f(x,0) =sin(x2)x

2etf(0,y) =-sin(y2)y

2

Dès que :

lim t→0sintt = 1 si on poset=x2out=y2on trouve que : lim x→0f(x,0) = 1etlimy→0f(0,y) =-1. Cela suffit pour dire que la limite en(0,0)n"existe pas et donc la fonction n"est pas prolongeable par continuitè en(0,0).

Exercice 4.Soitf:R2→Rdéfinie par

f(x,y) =¨ 12 (x2+y2)-1six2+y2>1 12 sinon

Montrer quefest continue.

Solution. Le termeg(x,y) =12

(x2+y2)-1est un polynôme et donc il est continue surR2. Pour prouver quefest continue il suffit vérifier que sur la circonférence {(x,y)?R2t.q.x2+y2= 1} le polynômeg(x,y)soit égal à-12 . Dès que : g(x,y)|{x2+y2=1}=12 (1)-1 =-12 la fonctionfest continue surR2. 3 Exercice 5.Prologer par continuité la fonction : f(x,y) =xyln(x2+y2) au point(0,0). Solution. On cherche de démontrer que notre fonction admet limite0lors que(x,y)→(0,0)à l"aide du théorème du pincement. A partir de la simple inégalité : (x+y)2≥0, on trouve |x2+y2| qui conduit à l"encadrement suivant : |(x2+y2)ln(x2+y2)|.

On rappelle la limite usuelle :

limt→0+tln(t) = 0. Si l"on poset= (x2+y2)on trouve que le terme de gauche admet limite0pour(x,y)→(0,0) et donc pour le théorème du pincement on a : lim (x,y→(0,0)f(x,y) = 0. La fonctionfadmet un prolongement par continuitéfdonné par :f(x,y) =¨f(x,y)si(x,y)?= (0,0)

0si(x,y) = (0,0)

Exercice 6.Dire si

f(x,y) =xy-2yx

2+y2-4x+ 4

est prolongeable par continuité au point(2,0). Solution. Comme d"habitude on commence en cherchant deux courbes qui passent pour le point (2,0)et conduisent à deux limites différentes. On essaye avecy= 0ety=x-2. On trouve : f(x,0) = 0etf(x,x-2) =-12 et donc lim(x,y→(2,0)f(x,0) = 0etlim(x,y→(2,0)f(x,x-2) =-12 La fonction n"est pas prolongeable par continuité au point(2,0)car la limite n"existe pas.

Exercice 7.Montrer que la fonction

f(x,y) = sin(xy2) admet limite0au point(0,0). Solution. Au voisinage de 0 on a l"inégalité usuelle : sin(t)< t. 4 Si l"on poset=xy2le théorème du pincement dit que la limite de f pour(x,y)→(0,0)est 0, car : etxy2tend vers 0 si(x,y)→(0,0). La fonctionfadmet un prolongement par continuitéfdonné par :f(x,y) =¨f(x,y)si(x,y)?= (0,0)

0si(x,y) = (0,0)

Exercice 8.Prolonger par continuité la fonction f(x,y) =sin(2x-2y)x-y sur la diagonale d"équationx=y.

Solution. On rappelle la limite usuelle :

lim t→0sin(t)t = 1. Si l"on poset=x-yon a quet→0six→y. Alors : lim x→ysin(2x-2y)x-y= limx→y2sin(2x-2y)2x-2y= 2. La fonctionfadmet un prolongement par continuitéfdonné par :f(x,y) =¨f(x,y)six?=y

2six=y

Exercice 9.En utilisant les coordonnées polaires montrer que la fonctionf(x,y)définie dans l"exercise 1 n"est pas continue au point(0,0). Solution. Il est souvent utile de passer aux cordonnées polaires pour simplifier le calcul d"une limite d"une fonction de deux variables. Tout point(x,y)?R2\(0,0)peut être represénté par ses cordonnées polaires centrées autour d"un point(x0,y0)grâce aux relations : x=x0+rcosθ y=y0+rsinθ avecr >0etθ?[0,2π[. On peut montrer que si lim r→0f(x0+rcosθ,y0+rsinθ) =l alors lim(x,y)→(x0,y0)f(x,y) =l. On considère la fonctionfdéfinie dans l"exercise 1 et on passe en polaires avecx0= 0,y0= 0.

On a :

lim(x,y)→(0,0)f(x,y) = limr→0f(rcosθ,rsinθ) = = lim r→0r

2(cos2θ-sin2θ)r

2(cos2θ-sin2θ)=

lim r→0(cos2θ-sin2θ) = cos2θ

Pour valeurs différentes decos2θon a une valeur limite différent donc la limite n"existe pas.

5quotesdbs_dbs19.pdfusesText_25