[PDF] Chapitre 2 Formes bilin´eaires sym´etriques, formes - CAS



Previous PDF Next PDF







Chapitre 2 Formes bilin´eaires sym´etriques, formes - CAS

exemple apr`es la d´efinition 2 1 sont non d´eg´en´er´ees En dimension finie, une forme bilin´eaire sym´etrique b sur E ×E est donc non d´eg´en´er´ee si et seulement si sa matrice dans une base de E est inversible



Algèbre bilinéaire

ii) Tout hyperplan de E est le noyau d’au moins une forme linéaire non nulle de E iii) Si j et y sont deux formes linéaires non nulles de E Alors ker(j)=ker(y)()9l2K : y=lj Proposition 1 3 Preuve i) Soit j une forme linéaire non nul sur E, alors on sait que E=ker(j) est isomorphe à Im(j) Puisque j6=0, alors Im(j)6=f0



ALGEBRE BILINEAIRE

toute forme bilinéaire symétrique définie positive C’est-à-dire toute application de EE Dans ce premier exemple : 2 ¦ 1 1 1 1 1



Sommaire - AlloSchool

A ce niveau, on conclut que la forme est bilinéaire symétrique Ensuite, on montre : •la positivité de la forme quadratique et enfin; •son caractère défini-positif A ce niveau, on conclut que la forme bilinéaire symétrique est bien un produit scalaire



Daniel ALIBERT Formes quadratiques Espaces vectoriels

Soit E un espace vectoriel réel, et q une forme quadratique sur E Si q(x) ≥ 0, pour tout x de E, on dit que q (ou sa forme polaire) est positive Sur Rn, la forme quadratique canonique est non dégénérée et positive Soit φ une forme bilinéaire symétrique non dégénérée positive sur un espace vectoriel réel de dimension finie



ANNALES SCIENTIFIQUES DE L - Personal pages

En d'autres termes q est une forme quadratique, appelée forme quadratique de Kervaire, associée à la forme bilinéaire non dégénérée : H^M' Z/l) xH^M;^) -> Z/2, (x,y) On montre (voir par exemple la proposition 0 2 2) que la classe de q dans le groupe de Witt



Extrait de la publication

d’une forme bilinéaire de signature (2,l) et relions la topologie des orbites d’un groupe discret G de transformations orthogonales pour cette forme, à celle des trajectoires des flots géodésique et horocyclique sur le quotient du fibré unitaire tangent de W par un groupe fuclisien En traduisant dans



Le PRODUIT VECTORIEL - AlloSchool

Exemple : et deux vecteurs tels que : u ;1 et v 3 et 3 uv S Calculer : uv 3 3 3 sin 1 3sin 3 3 2 2 u v u v S u T III) PROPRIETES DU PRODUIT VECTORIEL 1) Propriétés : 1) uu 0 2)Le produit vectoriel est antisymétrique: v u u v 3)Le produit vectoriel est bilinéaire : u v w u w v w



Formulations mixtes augmentées et applications

Mathematical Modelling and Numerical Analysis M2AN, Vol 33 N° 3, 1999, p 459-478 Modélisation Mathématique et Analyse Numérique FORMULATIONS MIXTES AUGMENTEES ET APPLICATIONS



ALG 12 Espaces préhilbertiens réels

Exemple 12 3 Produits scalaires usuels Voici quelques cas usuels de produits scalaires : Le produit scalaire canonique sur E ˘Rn défini par hXjYi ˘ XTY ˘ Xn i˘1 Xi Yi; †On écrit les éléments de Rn sous forme de matrices-colonnes et on identifie XTY, élément de M1(R), avec son seul coefficient

[PDF] le rôle des médias dans la culture

[PDF] medias et culture

[PDF] evolution des médias

[PDF] culture médiatique définition

[PDF] histoire des medias dans le monde

[PDF] histoire et évolution des médias

[PDF] les genres littéraires tableau

[PDF] puissance de 10 ecriture decimale

[PDF] notation scientifique exercices corrigés 3eme

[PDF] sigma de 1/k

[PDF] les formes poétiques

[PDF] somme sigma mathématique

[PDF] sigma k

[PDF] resultat tpe 2016

[PDF] inventer une ruse de renart

Chapitre 2 Formes bilin´eaires sym´etriques, formes  - CAS

Chapitre 2

Formes bilin´eaires sym´etriques,

formes quadratiques

2.1 Formes bilin´eaires sym´etriques

Dans ce qui suit,Eest un espace vectoriel sur un corpsK.

2.1.1 D´efinition

D´efinition 2.1

Une application

b:E×E-→K est appel´ee uneforme bilin´eairequand ?x1,x2,y?E?λ?Kb(x1+λx2,y) =b(x1,y) +λb(x2,y) ?x,y1,y2?E?λ?Kb(x,y1+λy2) =b(x,y1) +λb(x,y2) (bilin´earit´e = lin´earit´e `a gauche + lin´earit´e `a droite).

On dit quebestsym´etriquequand

?x,y?E b(x,y) =b(y,x). Remarquer que la sym´etrie permet de ne v´erifier la lin´earit´e que d"un seul cˆot´e.

Exemples:

1. E=K. La multiplication (x,y)?→xyest une forme bilin´eaire sym´etrique surK×K. 5

6CHAPITRE 2. FORMES QUADRATIQUES

2.

E=R2. Le produit scalaire usuel

µµx1

x 2 ,µy1 y

2

?→x1y1+x2y2 est une forme bilin´eaire sym´etrique surR2×R2. 3.

E=C([-1,1],R). L"application

C

0([-1,1],R)× C0([-1,1],R)-→R

(f,g)?-→Z 1 -1f(t)g(t)dt est une forme bilin´eaire sym´etrique. 4.

E=Mn(K). L"application

M n(K)×Mn(K)-→K (A,B)?-→trace(AB) est une forme bilin´eaire sym´etrique (v´erifier la sym´etrie).

2.1.2 Matrice d"une forme bilin´eaire sym´etrique

On suppose

Ede dimension finien. SoitE= (e1,...,en) une base deE. Soitbune forme bilin´eaire sym´etrique surE×E.

D´efinition 2.2

La matriceME(b)debdans la baseEest la matrice sym´etrique n×nqui a pour coefficientsb(ei,ej)(i num´ero de ligne entre 1 etn,jnum´ero de colonne entre 1 etn). Sixetysont des ´el´ements deEdont les vecteurs colonnes de coordonn´ees dans la baseEsontXetYrespectivement, on a b(x,y) =tX ME(b)Y . Dans l"autre sens, siMest une matrice sym´etrique dansMn(K), alors (x,y)?→tX M Y(o`uXetYsont les vecteurs colonnes des coordonn´ees de xetydans la baseE) est bien une forme bilin´eaire sym´etrique.

Exemple:µ3 1

1-2

est la matrice (dans la base canonique) de la forme bilin´eaire sym´etrique

µµx1

x 2 ,µy1 y

2

?-→3x1y1-2x2y2+x1y2+x2y1. SoitE?une autre base deEetPla matrice de changement de base deE `aE?.

2.1. FORMES BILIN

´EAIRES SYM´ETRIQUES7

Rappel : Changement de base.

D´efinition 2.3

La matrice de changement de base deE`aE?= (e?1,...,e?n)est la matrice inversibleP dont laj-`eme colonne est form´ee des coordonn´ees dee?jdans la baseE.

Proposition 2.4

Soitxun ´el´ement deE,X(respX?) le vecteur colonne de ses coodonn´ees dansE (resp.E?). AlorsX=P X?. Soituun endomorphisme deE,M(resp.M?) sa matrice dans la baseE (resp.E?). AlorsM?=P-1AP. Proposition 2.5 (Changement de base pour les f.b.s.)

La matrice de

la forme bilin´eaire sym´etrique dans la nouvelle baseE?est M

E?(b) =tP ME(b)P .

2.1.3 Forme bilin´eaire et dualit´e

Soitb:E×E→Kune forme bilin´eaire sym´etrique. Pour toutx?E, l"application b(·,x) :E-→K y?-→b(y,x) est une forme lin´eaire surK, c"est `a dire un ´el´ement du dualE?.

Proposition 2.6

L"application

b:E-→E? x?-→b(·,x) est lin´eaire. On appelle?bl"application lin´eaire deEdans son dual associ´ee `a la forme bilin´eaire sym´etriqueb. SiEest de dimension finie etEest une base deE, alors la matrice debdansEest ´egale `a la matrice de?b:E→E?o`uEest muni de la baseEetE?de la base dualeE?.

D´efinition 2.7

Lenoyaude la forme bilin´eaire sym´etriqueb, not´eker(b) est le noyau de?b, c.-`a-d. : ker(b) ={x?E| ?y?E b(y,x) = 0}. La forme bilin´eaire sym´etriquebest ditenon d´eg´en´er´eequand son noyau est r´eduit `a{0}. SiEest de dimension finie, lerangdebest le rang de l"application?b, c.-`a-d. aussi le rang de la matrice debdans une base deE.

8CHAPITRE 2. FORMES QUADRATIQUES

On peut v´erifier que toutes les formes bilin´eaires sym´etriques donn´ees en exemple apr`es la d´efinition 2.1 sont non d´eg´en´er´ees. En dimension finie, une forme bilin´eaire sym´etriquebsurE×Eest donc non d´eg´en´er´ee si et seulement si sa matrice dans une base deEest inversible.

Proposition 2.8

Soitbune forme bilin´eaire sym´etrique non d´eg´en´er´ee sur E×E, o`uEest de dimension finie. Alors, pour toute forme lin´eaire??E?, il existe un uniquex?Etel que ?y?E ?(y) =b(y,x).

2.1.4 Orthogonalit´e

Dans ce paragraphe,best une forme bilinaire sym´etrique surE×E.

D´efinition 2.9

SoitFun sous-espace vectoriel deE. L"orthogonal deF pourbest le sous-espace deEd´efini par F ?={x?E| ?y?F b(y,x) = 0} Par exemple, pour le produit scalaire dansR3, l"orthogonal d"une droite vectorielleDest bien le plan vectoriel orthogonal (au sens usuel) `aD. Le lien avec l"orthogonal pour la dualit´e se fait grˆace `a l"application lin´eaire?b:E→E?associ´ee `ab.

Proposition 2.10

F ?= (?b(F))◦.

Th´eor`eme 2.11

On supposeEde dimension finien.

Sibest non d´eg´en´er´ee, alorsdim(F?) =n-dim(F). En g´en´eraldim(F?) =n-dim(F) + dim(F∩ker(b)).

Proposition 2.12

On a toujoursF?(F?)?. SiEest de dimension finie

etbnon d´eg´en´er´ee, on aF= (F?)?.

2.2 Formes quadratiques

A partir de maintenant et pour tout le reste du chapitre, le corpsKest suppos´e de caract´eristique diff´erente de 2, ce qui veut dire que 2?= 0 dansK (par exemple,Z/2Zest exclu). On d´esigne toujours parEun espace vectorielquotesdbs_dbs2.pdfusesText_2