[PDF] Separation and Purification Technology



Previous PDF Next PDF







EXPERIMENTAL AND KINETIC MODELING OF A RICH METHYL PENTANOATE

OF A RICH METHYL PENTANOATE FLAME AT LOW PRESSURE S Van Damme1, V Dias2, H, Jeanmart2 and F Contino1 1Vrije Universiteit Brussel, Department of Mechanical Engineering, Brussels, Belgium 2 Université catholique de Louvain, Institute of Mechanics, Materials, and Civil Engineering, Louvain -la Neuve, Belgium 1 Corresponding author: stefvdam



Prediction of Density and Viscosity of Biofuel Compounds

Figure S6 2 4 6 8 r-O••••O- (Å) 0 0 25 0 5 0 75 1 1 25 g(r) methyl acetate methyl propanoate methyl butanoate methyl pentanoate Figure S7 2 4 6 8



University of Zurich

potassium 2-{[(2Z)-(3-hydroxy-1-methyl-2-butenylidene)]amino}-4-methyl-pentanoate potassium 2-{[(E)-1-(2-hydroxyphenyl)alkylidene]amino}-4-methyl-pentanoates Cell lines NMR Crystal structure Introduction One of the most important goals of pharmacological research is the search for new molecular



Separation and Purification Technology

protic IL, N-methyl-2-hydroxyethylammonium pentanoate (m-HEAP or [N 1(2OH)HH][Pe]) was prepared from stoichiometric quantities of the 2-methylaminoethanol with pentanoic acid using the methodology de-scribed in detail by Talavera-Prieto et al [29] with a final mass fraction purity, determined by 1H NMR, higher than 98 The final water



J Chem Thermodynamics

2-hydroxyethylammonium, bis(2-hydroxyethyl)ammonium, and tris(2-hydroxyethyl)ammonium cations with pentanoate anion Experimental data on density, viscosity, speed of sound and refrac-tive index as well as IR and NMR spectra were reported by Àlvarez et al [46] for N-methyl-2-hydroxyethylammonium cation with var-



Epanorin, a lichen secondary metabolite, inhibits

Eduardo de la Peña3,Natalia V Quiñones1,2,Hugo Díaz 4,Flavio Carrión 5,Carlos F Henríquez‑Roldán 6 -2-phenylacetyl]amino]-4-methyl-pentanoate)

[PDF] exemple compte rendu d'entretien d'embauche candidat

[PDF] compte rendu entretien d'embauche candidat

[PDF] exemple de feedback entretien d'embauche

[PDF] exemple compte rendu d'entretien d'embauche recruteur

[PDF] exemple de compte rendu d'entretien individuel

[PDF] sigma de k

[PDF] formule de pascal combinaison

[PDF] sigma k^2

[PDF] l'avare de molière résumé

[PDF] les 12 travaux d'hercule livre en ligne

[PDF] les douze travaux d'hercule livre

[PDF] application formule du crible

[PDF] déclinaison culturelle cycle 3 anglais

[PDF] formule de poincaré n=3

[PDF] formule du crible probabilité démonstration

Contents listsavailable atScienceDirect

Separation andPuri fication Technology

journalhomepa ge:www.elsevier.com/locate/seppur Solubility ofcarbon dioxidein encapsulatedionic liquids

Jesús Lemus

a b,⁎ , FranciscoA. DaSilva F. a , JosePalomar b , PedroJ. Carvalho a

Joao A.P.Coutinho

a a

CICECO -Aveiro Instituteof Materials,Department ofChemistry, Universityof Aveiro,3810-193 Aveiro,Portugal b

Seccion deIngenieria Quimica,Universidad Autonomade Madrid,Cantoblanco, 28049Madrid, Spain

ARTICLE INFO

Keywords:

Gas treatment

Carbon dioxidecapture

Encapsulated ionicliquids

Templated carbon

ABSTRACT

Ionic liquids(ILs) havebeen objectof extensiveresearch duringthe lastyears dueto theirpotential forindustrial

application withspecial intereston carbondioxide (CO 2 ) capture.Nonetheless, ILstransport propertieshave stand outas themajor drawbackfor theiruse onabsorption applications.This workproposes ionicliquids encapsulated (ENILs)into carbonaceoussubmicrocapsules, asa novelmaterial forCO 2 capture. Thisinnovative material takesadvantage ofthe ILsgas-absorbing propertiesand cost-e ffectiveness whilecircumventing theIL

viscosity byincreasing thesurface contactarea withrespect tothe bulkfluid. TheENILs preparedusing 1-ethyl-

3-methylimadazolium bis(trifluoromethylsulfonyl)imide ([C2

C 1 im][NTf 2 ]) andN-methyl-2-hydro- xyethylammonium pentanoate(m-HEAP), werecharacterized bySEM, TEM,elemental analysis,TGA andBET to

assess theirmorphology, chemicalcomposition, porousstructure andthermal stability.The absorptionof CO

2 on these materialswas studiedup to0.6 MPaand 353K. Desorptionof CO 2 from theexhausted ENILswas eval- uated, atmild conditions,evidencing theENILs assuitable separatingagents forCO 2 capture, withhigh sorption capacity andfast andcomplete regeneration,and feasiblealternatives tobulk ILabsorption.

1. Introduction

CO 2 is regardedas themost significant anthropogenicgreenhouse gas, withits globalatmospheric concentrationincreasing mainlyas a result offossil fuelcombustion, inparticular powerplant emissions[1]. One ofthe mostpromising near-termmethodologies formitigating the global warminge ffects causedby greenhousegases consistsof direct CO2 capture atpower plants[2]. ConventionalCO 2 post-combustion capture technologiesare basedon amineabsorption processes,which arise severalconcerns suchas theircorrosive natureand volatility, leading tohigh operationalcost andenvironmental impact[3-5]. Therefore, itis criticalto developinnovative andcost-e ffective tech- nologies capableof efficiently captureCO 2 , overcomingthe problems related tocommercially availablesystems. Ionicliquids (ILs)are being explored forCO 2 capture dueto theirunique properties,such ashigh solvating capacityfor different compounds,tunability, lowvapor pressure, wideliquid temperaturerange, highthermal stability,non- flammability, etc.[6-8]. However,after bindingto CO 2 , manyILs un- dergo astrong increasein viscosityand thishigh viscositylimits theuse of ILsin liquidabsorbers andis amajor drawbackto industrialappli- cation ofILs [9,10]. Themodi fication ofILs isessential beforethese agents canbe usedin aCO 2 capture/separation processes[11-14].In

this way,the supportedionic liquidsphase (SILP)have beenproposed as apractical resultto overcomethe masstransfer limitationsof ILsin

gas-liquid separationprocesses [15]. However,the relativelylow amount ofIL thatcan beplaced onthese materialsmay limittheir applications inchemical reactionsand separationprocesses. In thiscontext, theENIL conceptappears asan interestingoption [16,17]. ENILconsists ofhollow carbonaceoussubmicrocapsules (Ccap that confine theILs [18-20]. Thepreparation ofENILs isfavored bythe high affinity foundbetween ILsand activatedcarbon [21,22]. Thisnew material ischaracterized bya highproportion ofIL (80% inweight) and capsulesizes rangingfrom 700to 1000nm. Therefore,the ENIL concept impliesa shiftfrom continuousto discreteIL phasewith sub- micron sizeunits. Dueto theirunique structure,ENILs drasticallyin- crease thespeci fic contactarea withrespect tothe neatILs, enhancing the rateof masstransfer whilemaintaining thesolvation capabilityof the ILs[15]. Moreover,ENILs showan additionaladvantage ofhigh versatility, sincethey canbe preparedat different loads(up to80% w/ w) usingILs withoptimized propertiesfor aspeci fic application.Ad- ditional efforts todevelop newsorbents basedon ILshave alsobeen actively investigatedin thepast decades,with researcherslooking for ILs modifications, likeanime-functionalized task-specific ionicliquids (AAILs)[23,24], reversibleILs [25], aproticheterocyclic anionbased IL (AHA-IL)[26]or carboxylateanion-based ILs[27], withenhanced CO2

absorption capability.These previousworks evidencecommon http://dx.doi.org/10.1016/j.seppur.2017.08.032

Received 31May 2017;Received inrevised form26 July2017; Accepted11 August2017

Corresponding authorat: CICECO- AveiroInstitute ofMaterials, Departmentof Chemistry,University ofAveiro, 3810-193Aveiro, Portugal.

E-mail address:jesus.lemus@ua.pt(J. Lemus).

$YDLODEOHRQOLQH$XJXVW quotesdbs_dbs6.pdfusesText_12