[PDF] Chapter 5 Basics of Projective Geometry



Previous PDF Next PDF







GÉOMÉTRIE AFFINE - Université Paris-Saclay

GÉOMÉTRIE AFFINE Document de travail pour la préparation au CAPES Version 2008 MARIE-CLAUDE DAVID FRÉDÉRIC HAGLUND DANIEL PERRIN AVEC LA PARTICIPATION DE JACQUES CHAUMAT MATHÉMATIQUE, BÂT 425 UNIVERSITÉ PARIS-SUD F-91405 ORSAY CEDEX



Géométrie affine

1 Géométrie affine 1 Définition d’un espace affine 2 Espaces affines de dimension finie ; repères affines 3 Barycentres, coordonnées barycentriques



Geom04 geometrie affine - lewebpedagogiquecom

1 1 Espace affine Géométrie 4 2/10 ICAM Toulouse I1 1 3 Intersection, parallélisme Proposition 1 : Soient A et A ’ deux sous-espaces affines non vides d



M302 : Géométrie affine et euclidienne - CBMaths

6 Chapitre1 Structuresalgébriques 1 1 2 Homomorphismedegroupes Définition1 1 4 Soient(G,∗) et(G0,4) deuxgroupes UneapplicationϕdeG





Ex sur la géométrie affine

Exercices sur la géométrie affine 1 Soit ABCDEFGH un cube de l’espace Déterminer S S AFG BCH o 2 On pose Soit ABC un triangle indirect dans le plan orienté



L3 Géométrie et isométries TD 3 - Lionel Fourquaux

L3 Géométrie et isométries TD 3 Author: Lionel Fourquaux Subject: Géométrie affine Created Date: 11/20/2015 1:40:58 AM



Algèbre 1re année

Géométrie affine 1 Points et vecteurs 159 2 Sous-espaces affines 160 3 Repères et barycentre 165 4 Géométrie affine dans le plan 170 5 Géométrie affine dans l’espace 174 6 Applications affines 178 Exercices 185 Chapitre 9 Arithmétique 1 Divisibilité 193 2 Plus grand commun diviseur 195 3 Le théorème de Bézout 197 4 Les



Chapter 5 Basics of Projective Geometry

Chapter 5 Basics of Projective Geometry Think geometrically, prove algebraically —John Tate 5 1 Why Projective Spaces? For a novice, projective geometry usually appears to be a bit odd, and it is not



TOUS LES EXERCICES DALGEBRE ET DE GEOMETRIE MP

D'ALGÈBRE ET DE GÉOMÉTRIE MP Pour assimiler le programme, s’entraîner et réussir son concours Rappels de cours et exercices d’assimilation Plus de 400 exercices dont la majorité est issue d’oraux de concours récents Solutions complètes et détaillées EL-HAJ LAAMRI † PHILIPPE CHATEAUX † GÉRARD EGUETHER

[PDF] espaces affines exercices corrigés

[PDF] exercices corrigés sur la régulation hormonale de la pression artérielle

[PDF] régulation de la pression artérielle physiologie

[PDF] régulation de la pression artérielle ppt

[PDF] schéma pression artérielle

[PDF] barorécepteurs sensibles aux variations de la pression artérielle

[PDF] régulation de la pression artérielle cours

[PDF] different trains steve reich analyse musicale

[PDF] centre apneustique

[PDF] schéma régulation de la fonction de reproduction chez la femme

[PDF] régulation hormonale chez la femme pdf

[PDF] espacement naturel des naissances

[PDF] espacement des naissances définition

[PDF] introduction sur la régulation des naissances

[PDF] docteur folamour analyse

Chapter5

BasicsofProject iveGeom etry

Thinkgeometri cally,provealgebraically.

- JohnTate

5.1WhyP rojectiveS paces?

Forano vic e,projectivegeometryu suallyappearstobeabitodd,and itisnot obvioustomotivatewhyi tsintroductionisinevitableand infactfruitful.Oneofthe mainmotivat ionsarisesfromalgebraicgeometr y. Themai ngoalofalgeb raicgeometry istost udythepropertiesofgeometricob- jects,suchasc urvesandsurf aces,d efinedimplicitlyintermsofalgeb raicequations.

Forins tance,theequation

x 2 +y 2 !1=0 definesacircleinR 2 equations ax 2 +by 2 +cxy+dx+ey+f=0 thesecurvesac cordingtotheirgenericg eometricshape.Thisisin dee dpossible. Exceptforso-call edsingula rcases,wegetellipses,parab olas,andhyperbolas .The samequestio ncanbeaskedforsurfaces definedbyq uadrat icequations,known areabit arti ficial.Forex ample,anellipseandahyperbo ladifferbythefact that providedthatpointsati nfinityarehandl edproperly. Anotherimportantpr oblemisthestudyofintersect ionofgeometricobjects(de- finedalgebr aically).Forexample,giventwocurvesC 1 andC 2 ofdegr eemandn, respectively,whatisthenumberofinterse ctionpointso fC 1 andC 2 ?(bydegreeof thecurv ewemeanthetotaldeg reeof thedefiningpolyn omial). 103

1045BasicsofProjectiveGeometry

Well,itdepend s!Even inthecaseoflines(whenm=n=1),there arethree possibilities:eitherthelinescoincide,orthey areparallel,orthe reisas ingleinter- sectionpoint.Ingen eral,weexpectmnintersectionpoints,butsomeofth esepoints maybemi ssingb ecausetheyareatinfi nity,becausetheycoin cide,orbecause they areimagi nary. Whatbegins totranspireisthat "point satinfinity"causetrouble.Theycaus eex- ceptionsthatinvalidategeometricth eorems(forexample,considerthemoregeneral versionsofthetheorems ofPapp usandDesa rguesfromSection2.12),andmakeit difficulttoclassifygeom etricobj ects.Projectivegeometryis design edtodealwith "pointsatinfinity"andr egu larpointsinauniformway,wi thoutma kingadistinc- tion.Pointsat infinityarenowjus tordin arypoints,andm anythingsbecomesim- pler.Forexample ,thecla ssificationofconicsandqua dricsbecomessimpler,and intersectiontheorybecomesclean er(although,tobeh onest,we needtoc onsider complexprojectivespaces ). Technically,projectivegeometrycan bedefinedaxiomatically,orby buidling uponli nearalgebra.Histori cally,theaxiomaticappr oachcamefirst (seeVeblenand Young[28,29], EmilArtin[1 ],andCoxeter [7,8,5,6]). Althoughverybeautifuland elegant,webelievethati tisahar derapproachthantheline aralg ebraicapproach.In thelinear algebraicappr oach,allnotionsareconsid ereduptoascalar.Forexample, aprojectivepointisreallyalinethroughtheorigin.Intermsof coordi nates,this correspondsto"homogenizing."Forexample, thehomogeneousequationofaconic is ax 2 +by 2 +cxy+dxz+eyz+fz 2 =0. arepoin tsofcoordinates(x,y,0)(withx,y,znotallnull,anduptoascalar).Thereis ausefulmodel(interpretation)ofplaneprojectivegeometryin termsof thecentral projectioninR 3 fromtheo riginontot heplanez=1.A notherusefulmodelis the spherical(orthehalf-spheri cal)mode l.Inthesph ericalmodel,aproject ive point correspondstoapairofantipodalpo intson the sphere. Asaf finegeometryisth estudyofpropertiesinvar iantun deraffinebijections , projectivegeometryisthestudyofprope rtiesinvariantunderbije ctiveprojective maps.Roughlys peaking,projectivemap sarelinearmapsuptoascalar.Inanalogy withourpre sentationofaffinegeometry,wewilldefineprojectivespaces,projective wede finetheprojectiv ecomplet ionofanaffinespace,andwhenwedefineduality. ofra tionalcurvesandrationals urfaces.Thegeneral ideaisthataplanerational curveisthepr ojection ofasimpler curveinalargerspace,apolynomialcurvein R 3 ,ontotheplanez=1,as wenowexpl ain. Polynomialcurvesarecurvesde finedparametricallyi ntermsofpolynomi- als.Moresp ecifically,ifEisan affines paceoffinitedimens ionn#2and (a 0 ,(e 1 ,...,e n ))isan affinef rameforE,apolynomialcurveofdegreemisam ap

F:A$Esuchthat

F(t)=a

0 +F 1 (t)e 1 +···+F n (t)e n

5.1WhyPr ojectiv eSpaces?105

forallt%A,whereF 1 (t),...,F n (t)arepol ynomialsofdegreeatmostm. Althoughmanycurvescanb edefined,iti ssomewhatembarassingtha tacircle cannotbedefinedi nsuchaw ay.Infact,manyin teresti ngcurvescann otbedefined thisway, forexample,ellip sesandhyp erbolas.Arathersimplewayt oextendthe classofcurves definedpar ametricallyisto allowrationalfunctionsinsteadof poly- nomials.Aparametricrationalcurveofdegr eemisaf unc tionF:A$Esuch that

F(t)=a

0 F 1 (t) F n+1 (t) e 1 F n (t) F n+1 (t) e n forallt%A,whereF 1 (t),...,F n (t),F n+1 (t)arepoly nomialsofdegreeatmostm.

Forexam ple,acircleinA

2 canb edefinedb ytherationalmap

F(t)=a

0 1!t 2 1+t 2 e 1 2t 1+t 2 e 2

Inth eaboveex ample,thedenomi natorF

3 (t)=1+t 2 nevertakesthev alue0 2

G(t)=a

0 t 2 t e 1 1 t e 2 ObservethatG(0)isun defined.Thecurvedefinedabove isahyperbo la,andfort closeto0,thep ointon thecurv egoestowar dinfinityinoneof thetwoa symptotic directions. inap roje ctivespace.Intuitively,thismea nsviewingarationalcurveinA n ass ome appropriateprojectionofapolyno mialcurveinA n+1 ,backontoA n GivenanaffinespaceE,foranyhyperplaneHinEandanypo inta 0 notinH,the centralprojection(o rconicprojection,orperspective projection)ofcentera 0 onto H,isthepartialmappdefinedasfollows :Foreve rypointxnotin thehyperpla ne passingthrougha 0 andparall eltoH,wedefinep(x)asth eintersectio noftheline definedbya 0 andxwiththehyp erplaneH.

Forexam ple,wecanviewGasar atio nalcurveinA

3 givenby G 1 (t)=a 0 +t 2 e 1 +e 2 +te 3

Ifwe project thiscurveG

1 (infact ,aparabolainA 3 )usingthecentralprojection (perspectiveprojection)ofcentera 0 ontothepla neofequati onx 3 =1,w egetthe previoushyperbola.For t=0,the pointG 1 (0)=a 0 +e 2 inA 3 isinth epla neof equationx 3 =0,a nditsproj ectionisundefi ned.WecanconsiderthatG 1 (0)=a 0 e 2 inA 3 isprojectedtoinfinityinthedirectionofe 2 intheplanex 3 =0.Inthesetting ofproj ectivespaces,thisdirectionc orrespondsrigorouslytoa poin tat infinity. Letusve rifyt hatthecentralproje ctionusedin theprevio usexamplehasthede- siredeffect. LetusassumethatEhasdimens ionn+1andthat(a 0 ,(e 1 ,...,e n+1 isan affinef rameforE.Wewanttodeterminethecoordinatesofthecentralprojec- tionp(x)ofapoi ntx%Eontothehype rplaneHofequa tionx n+1 =1(thecenterof

1065BasicsofProjectiveGeometry

projectionbeinga 0 ).If x=a 0 +x 1 e 1 +···+x n e n +x n+1 e n+1 assumingthatx n+1 "=0;apoi ntont helinepassing througha 0 andxhascoordi nates ofthe form(!x 1 ,...,!x n+1 );andp(x),thecentralprojectionofxontothehyper - planeHofequa tionx n+1 =1,is theinter secti onofthelinefroma 0 toxandthis hyperplaneH.Thuswemusthave!x n+1 =1,and thecoordina tesofp(x)are x 1 x n+1 x n x n+1 ,1

Notethatp(x)isun definedwhenx

n+1 =0.I nproject ivespaces,wecanmakesense ofsuc hpoints. Theabov ecalculationcon firmsthatG(t)isa cen tralprojectionofG 1 (t).Simi- larly,ifwedefin ethe curveF 1 inA 3 by F 1 (t)=a 0 +(1!t 2 )e 1 +2te 2 +(1+t 2 )e 3 thecentr alprojectionofthepolyn omialcurveF 1 (again,aparabolainA 3 )ontothe planeofequati onx 3 =1isthecircleF. Whatwejus tsketc hedisagenera lmethodtodealwithration alcurves.Wecan useour"hat const ruction"toem bedanaffinespaceEintoave ctor space

Ehaving

onemor edimension,the nconstructtheprojective spaceP E .Thisturnsoutto bethe "project ivecompletion"oftheaffinespaceE.Thenwecandefinearational curveinP E Eback ontoP E thelacko fspace,su chapre sentationisomittedfromthe maintext.However,it canbe found intheadditionalmat erialont hewebsite; seehttp://www.cis. upenn.edu/ jean/gbooks/geom2.html. Moregenera lly,theprojectivecompletionof anaffinesp aceisav er yconvenient tooltohandle "po intsatinfinity"inaclea nfashion. Thischapte rcontainsabriefprese ntationofconceptsofprojectivegeometry. Thefoll owingconceptsarepresented: projectivespaces,projectiveframes,homo- affinepatches.The projectivecompletio nofanaffine spaceispresentedusingthe "hatconst ruction."ThetheoremsofPappusandDesarguesareproved,usingthe methodinwhichpo intsar e"senttoinfinity ."Wealsodiscussthecros s-ratioand duality.Thechapterendswit havery briefexplanationofth euseofthecomplexifi- cationofaproject ivespace ino rdertodefinethenotionofangleandort hogonality inap roje ctivesetting.Wealsoincludeasho rtsectiononapplicationsofprojective anderror -correctingcodes.

5.2Proje ctiveSpaces107

5.2Proje ctiveSpaces

Asin thecas eofaffineg eometry,our presen tationofproject ivegeo metryisrather sketchyandbiasedtow ardthealg orithmicgeomet ryofcurvesandsurfaces.Fora systematictreatmentofproj ectivegeometry,werecommend Berger[3,4],Sam uel [23],Pedoe[2 1],Coxeter[7,8,5, 6],Beutel spacherandRosenbaum[2],Fres- nel[14], Sidler[24],Tis seron[26],Lehmanna ndBkouche[20],Vien ne[30], andthecl assicaltreatis ebyVeblenandYoung [28,29],which,al thoughslightly old-fashioned,isdefinitelyworthrea ding.Emi lArtin'sfamousbook[ 1]contains, amongotherthin gs,anaxiomaticp resentationofprojectivegeometry,andawealth ofgeom etricmaterialpresentedf romanalgebraicpointofview.Other" oldiesbut goodies"includethebea utifulbooksbyDarboux[ 9]andKle in[19].Foradevel- opmentofproject iv egeometryaddressingthedelicatepr oblemofor ientation, see Stolfi[25],and foranapproachg earedtowa rdscomput ergrap hics,seePennaand

Patterson[22].

First,wedefineproj ective spaces,allo wingthefieldKtobe arbitrar y(which doesnoharm,andisneededtoallowfinite andcomplexprojectivespac es).Roughly speaking,everyprojectivec onceptisalinea -algebraicconcept"uptoas calar. "For spaces,thisismad epreciseasfol lows Definition5.1.Givenavectors pac eEoverafiel dK,theprojectivespaceP(E) inducedbyEisthe set(E!{0})/&ofe quivalenceclassesofnonzerovector sinE undertheequi valence relation&definedsuchthatf orallu,v%E!{0}, u&viffv=!u,forsom e!%K!{0}. Thecanonicalprojectionp:(E!{0})$P(E)isth efunctio nassociatingthe equivalenceclass[u] modulo&tou"=0.T hedimensiondim(P(E))ofP(E)is definedasfollow s:IfEisof infinitedim ension,thendim(P(E))=dim(E),andif

Ehasfinite dimension,dim(E)=n#1thendim(P(E))=n!1.

Mathematically,aprojectivespaceP(E)isas eto fequivale nceclas sesofvectors asan"at omi c"object,forgettin gtheinternalstruct ureoftheequi valenceclass.For thisreas on,itiscustomarytocallane qui vale nceclassa=[u] apoint(theentire equivalenceclass[u] isco llapsedintoasingleobjectviewe dasap oint) .

Remarks:

(1)Ifwe vie wEasanaf fine space,thenforany nonnullvect oru%E,since [u] ={!u|!%K,!"=0}, letting

Ku={!u|!%K}

denotethesubspa ceofdime nsion1spannedbyu,themap

1085BasicsofProjectiveGeometry

quotesdbs_dbs7.pdfusesText_13