[PDF] MOLECULES POLYATOMIQUES - THEORIE DE L’HYBRIDATION



Previous PDF Next PDF







VSEPR : Valence Shell Electron Pair Repulsion

La théorie VSEPR (sigle de l'anglais Valence Shell Electron Pair Repulsion, en français RPECV: « répulsion des paires électroniques de la couche de valence ») est une méthode destinée à prédire la géométrie des molécules en se basant sur la théorie de la répulsion des électrons de la couche de valence Elle est aussi



Méthode VSEPR - Laboratoire de Chimie Théorique

Méthode VSEPR Nb de liaisons (X) Nb de paires non liantes (E) Arrangement Géométrie de la molécule Angle Dénomination 2 0 AX2 = 180° Linéaire 3 0 AX3 = 120° Triangulaire 2 1 AX2E1 < 120° Coudée ou Forme en V 4 0 AX4 = 109,5° Tétraédrique 3 1 AX3E1 < 109 5° Pyramide trigonale 2 2 AX2E2 < 109,5° Coudée ou Forme en V 5 0 AX5



MOLECULES POLYATOMIQUES - THEORIE DE L’HYBRIDATION

- un atome dans un environnement linéaire (par exemple de types VSEPR AXE ou AX 2) aura une hybridation sp 1 Il s’agit bien sûr de sommes ou de différences pondérées par des coefficients, mais en première année l’estimation de la valeur absolue de ces coefficients n’est pas au programme



Atom in Molecules a Quantum Theory (AIM) - uni-rostockde

• Division into inner and out shell density possible (VSEPR) • ∇2ρ < 0 of the outer shell is called the valence shell charge concentration 3D-Laplacian of benzene • The Laplacian of the electron density recovers the shell structure of an atom by displaying a corresponding number of alternating shells of charge concentration and



ATOMES ET MOLÉCULES - ITC BOOKs - Home

VSEPR 1) Principes de la théorie VSEPR 2) Méthode générale pour obtenir la géométrie d’une molécule 3) Déformations par rapport à la géométrie idéale



LES MOLECULES I) THEORIE DE LEWIS

III) METHODE VSEPR (valence shell electron pair repulsion) La méthode permet de déterminer la géométrie d’une molécule construite autour d’un atome central A, porteur de paires non liantes E et directement lié à des atomes ou des groupes d’atomes X On peut ainsi écrire : AX n E m ( formule de Gillepsie) Cet atome



SSCC Sioufi

Created Date: 4/22/2010 8:32:22 AM



tout le cours en fiches - Dunod

Fiche 33 Les structures de Lewis et la règle de l’octet 80 Fiche 34 Les structures de Lewis : applications 82 P0III-XII-9782100743698 indd 3 20/11/2015 18:28



FLUORESCIENCES Chimie Ch - Dunod

FLUORESCIENCES Stéphane Perrio Béatrice Roy Jean-Yves Winum DUNOD Chimie Ch 9782100748310_FM indd 1 5/2/17 3:52 PM



CHIMIEGÉNÉRALE CHIMIEORGANIQUE EQUILIBRESCHIMIQUESENSOLUTIONS

cours de chimie avec exercices 1ére année universitaire universite abderahmane mira faculte des sciences de la nature et de la vie departement des troncs communs

[PDF] géométrie des molécules exercices

[PDF] relation parents adolescent aujourd'hui

[PDF] structure électronique des molécules mpsi

[PDF] communiquer avec un adolescent

[PDF] communication parents adolescent

[PDF] comment structurer un service communication

[PDF] l'importance des parents dans la famille

[PDF] quel est le role des parents dans la famille

[PDF] la parentalité définition

[PDF] qu'est ce que la parentalité aujourd'hui

[PDF] qu'est ce que la parentalité

[PDF] accompagnement ? la parentalité définition

[PDF] soutien ? la parentalité définition

[PDF] concept parentalité

[PDF] reforme internat journal officiel

MMOOLLEECCUULLEESS PPOOLLYYAATTOOMMIIQQUUEESS -- TTHHEEOORRIIEE DDEE LL""HHYYBBRRIIDDAATTIIOONN

Rappels.

Dans les atomes les électrons sont décrits par des orbitales atomiques (OA). Dans les molécules, ils sont décrits

par des orbitales moléculaires (OM) ! Ces OM s"expriment comme des combinaisons linéaires (des sommes ou

des soustractions) des OA appartenant aux atomes qui constituent la molécule. Pour pouvoir combiner des OA il

faut respecter deux conditions. Premièrement, les OA à combiner doivent avoir des énergies proches.

Deuxièmement, il faut que les OA se recouvrent ! A distance d"équilibre (longueur classique de liaison

chimique), les seules OA qui respectent ces deux conditions sont les OA de valence (les OA de coeur sont trop

contractées pour se recouvrir à ces distances et la différence d"énergie entre OA de coeur et OA de valence est

trop grande). Si K OA peuvent être combinées, on formera K OM.

Nous avons vu pour les molécules diatomiques comment combiner deux OA. Soit on en fait la somme, soit on en

fait la différence

1. Suite à ces combinaisons, si le recouvrement entre les OA est positif on forme une OM liante

(plus basse en énergie que les OA qui la composent), ou, si le recouvrement est négatif on forme une OM anti-

liante (plus haute en énergie que les OA qui la composent). Si les OA ont la même énergie, l"écart énergétique

entre les OA et l"OM liante est d"autant plus grand que le recouvrement entre OA est grand (idem pour l"OM

anti-liante). Si les OA n"ont pas la même énergie, l"écart énergétique entre l"OA la plus basse et l"OM liante est

proportionnel au carré du recouvrement divisé par la différence d"énergie entre les OA (voir exercice 3).

Les choses se compliquent un peu pour les molécules poly-atomiques où plus de deux OA peuvent se recouvrir.

Par exemple prenons la molécule d"H

2O avec les OA 1s des deux hydrogènes (1sA est l"OA 1s de l"atome

d"hydrogène A, 1s B celle de HB) et les OA 2s et 2p de l"oxygène (figure 1). On voit sur la figure que les OA 1sA et 1s

B ont un recouvrement non nul avec les OA 2s, 2px et 2pz de l"oxygène. L"OA 2py ne se recouvre avec

aucune autre OA. Cela veut dire qu"une OM sera identique à l"OA 2p y, mais qu"il faut combiner les 5 OA

restantes pour former 5 OM ! Nous verrons en troisième année comment faire ces combinaisons de manière

exacte et homogène. En première année, on utilise une approximation qualitative : les orbitales hybrides (OH).

Cela permet de construire la structure électronique d"une molécule poly-atomique en considérant principalement

des interactions diatomiques à deux orbitales ! z x O H AHB z x O H AHB 2s 1s B1sA z x O H AHB 2pz

1sB1sA

z x O H AHB 2px 1sA z x O H AHB 2px 1sB O H AHBxz y 2py

Figure 1. Molécule d"H

2O et recouvrement entre les OA.

Pour les éléments normaux, il n"y a que trois types d"hybridation : - digonale (sp) : combinaison de l"OA s et d"une OA p donnant deux OH sp pointant dans des directions opposées (Les OH sont notées d

1 et d2 sur la figure 2). Il reste 2 OA p inchangées

orthogonales à l"axe portant les 2 OH sp. - trigonale (sp

2) : combinaison de l"OA s et de 2 OA p donnant trois OH sp2 pointant vers les

sommets d"un triangle équilatéral (Les OH sont notées t

1, t2 et t3 sur la figure 2). Il reste 1 OA p

inchangée perpendiculaire au plan défini par les 3 OH sp 2. - tétragonale (sp

3) : combinaison de l"OA s et des 3 OA p donnant quatre OH sp3 pointant vers les

sommets d"un tétraèdre (Les OH sont notées q

1, q2, q3 et q4 sur la figure 2). Il ne reste pas d"OA de

valence sur l"atome. L"hybridation découle de la géométrie. Ainsi, - un atome dans un environnement linéaire (par exemple de types VSEPR AXE ou AX

2) aura une

hybridation sp.

1 Il s"agit bien sûr de sommes ou de différences pondérées par des coefficients, mais en première année

l"estimation de la valeur absolue de ces coefficients n"est pas au programme. - un atome dans un environnement triangulaire (par exemple de types AXE2, AX2E ou AX3) aura une hybridation sp 2. - un atome dans un environnement tétraédrique (par exemple de types AXE

3, AX2E2, AX3E ou AX4)

aura une hybridation sp 3.

Lors de la construction des OM, les OH pointent vers atomes avec lesquels les liaisons doivent être établies.

xyz 2s 2pz

2py2px

xyz d2 2pz d12px

OAhybridation sp

xyz t32pz hybridation sp2 xy t1t2 xyz q4q2 q1q3

hybridation sp3directions du tétraèdre Figure 2. Dessins des OA et des OH pour les trois hybridations sp, sp2 et sp3. Les orientations des axes sont

arbitraires.

L"hybridation des molécules où des atomes sont dans des environnements de bipyramide trigonale ou d"octaèdre

ne sera pas abordée dans ce rappel.

Exemple : la molécule d"H

2O dans sa géométrie d"équilibre (coudée).

Le type VSEPR de l"atome d"oxygène est AX

2E2. Cet atome a donc une hybridation sp3. Arbitrairement, sur le

dessin, l"OH q

1 pointe vers HA, l"OH q2 pointe vers HB et les 2 OH restantes, q3 et q4, pointent vers les deux

derniers sommets du tétraèdre. q1q2 q3q4

1sA1sB

O H AHB

L"OA 1s

A et l"OH q1 se recouvrent et forment 2 OM de type s (puisque le recouvrement est axial), une liante,

s(OH A), et une anti-liante, s*(OHA), entre l"oxygène et l"hydrogène A.

L"OA 1s

B et l"OH q2 se recouvrent et forment 2 OM de type s, une liante, s(OHB), et une anti-liante, s*(OHB),

entre l"oxygène et l"hydrogène B.

Les deux OH q

3 et q4 ne se recouvrant avec aucune autre orbitale restent telles quelles sont.

On conseille d"établir un tableau récapitulatif, où les 5 colonnes sont placées par ordre d"énergie croissante selon

l"ordre suivant : s (liante), p (liante), n (non-liante), p* (anti-liante), s* (anti-liante). s p n p* s* s(OHA) s(OH B) q 3 q

4 s*(OH

A) s*(OH B)

Cette molécule possède 8 électrons. D"après le principe d"Aufbaü les quatre OM occupées dans l"état

électronique fondamental sont : s(OH

A)2, s(OHB)2, q32 et q42

On retrouve le diagramme de Lewis standard avec deux paires de liaison O-H et deux paires libres sur

l"oxygène. Exercice 0(pour la correction se référer au cours)

En vous basant sur l"exemple précédent, établir la configuration électronique de l"état électronique fondamental

des molécules : BeH

2, BH3, CH4 et NH3.

Exercice 1

a) Construire le tableau récapitulatif des OM pour les molécules CH

3CH3, CH2CH2 et CHCH.

b) On rappelle que les distances C-C valent respectivement 1,54 Å, 1,34 Å et 1,20 Å et que le

recouvrement augmente quand la distance diminue. En vous basant sur l"énergie de la plus haute

orbitale moléculaire occupée (HOMO), expliquer les valeurs des potentiels d"ionisation de ces trois

molécules : C

2H6 11,6 eV ; C2H4 10,5 eV ; C2H2 11,4 eV.

Exercice 2

a) La molécule d"allène possède une géométrie non plane où les deux groupements CH

2 sont dans des

plans perpendiculaires. Etablir le tableau récapitulatif de ces OM et en déduire un diagramme de Lewis.

CECF HA HB CGHC HD xyz

b) Le 1,3-dichloroallène a pour formule développée : HClCCCHCl. Elle possède la même géométrie

générique que l"allène. A combien d"isomères correspond cette formule ?

Exercice 3

On peut modéliser la réaction d"une base (B) sur un acide par l"attaque des électrons de la paire libre de la base

sur l"acide. Du point de vue des orbitales moléculaires (OM) cela revient à considérer l"interaction entre l"OM

occupée décrivant la paire libre de la base (OM(B)) et l"OM vacante de plus basse énergie de l"acide selon le

schéma ci-dessous. Ici l"acide considéré est H + est donc son OM vacante de plus basse énergie et l"OA 1s : e OM(B)

OM lianteOM anti-liante

De e(1s(H)) e(B)

Stabilisation : S2/De

S > 0 : recouvrement positif

S < 0 : recouvrement négatif

OM(H+)

On rappelle que la stabilisation de l"OM liante est d"autant plus forte que le recouvrement (S) entre les deux

orbitales qui interagissent est grand et que la différence d"énergie (

De) entre les deux orbitales qui interagissent

est faible.

Ici, on supposera que le recouvrement entre l"OM décrivant la paire libre de la base (ou l"OM représentant la

paire libre de l"azote) et l"OA 1s de H + est toujours le même quelque soit la molécule.

En utilisant le modèle des orbitales hybrides pour construire les orbitales moléculaires, vous devez classer par

basicité croissante (de l"espèce la moins basique vers l"espèce la plus basique) les trois molécules suivantes

NH

3, H2CNH et N2 vis-à-vis du proton H+.

La démarche est la suivante :

1) Donner la configuration électronique de l"état fondamental des atomes H, C et N.

2) En déduire le nombre d"électrons de valence des atomes H, C et N.

3) Construire les schémas de Lewis des trois molécules NH

3, H2CNH et N2.

4) Donner les types VSEPR des atomes N des trois molécules NH

3, H2CNH et N2.

5) Identifier les hybridations des atomes N des trois molécules NH

3, H2CNH et N2.

6) Construire le tableau récapitulatif des OM des deux molécules NH

3 et H2CNH.

7) On suppose que pour ces trois molécules, l"OM de la base qui réagit avec le proton s"identifie à l"OH

décrivant la paire libre sur l"atome d"azote. On rappelle que l"énergie de l"OH

Y, composée de x % de

l"OA

ja et de y % de l"OA jb s"écrit : e (Y ) = x*e (ja) + y*e (jb), où e(ja) est l"énergie de l"OA ja. On

rappelle également qu"une orbitale hybride sp n est composée de 100/(n+1) % d"orbitale atomique de

type s et de 100n/(n+1) % d"orbitale atomique de type p. Calculer les énergies des OH décrivant les

paires libres des atomes d"azote des trois molécules NH

3, H2CNH et N2.

8) On estime que plus la stabilisation, de la paire libre de l"azote par interaction avec le proton, est grande,

plus la molécule est basique. Classer ces trois molécules selon leur basicité croissante vis-à-vis de H

Données :

e (1s (H)) = -13,6 eV e (2s (N)) = -24,8 eV e (2p (N)) = -14,8 eV

H (Z = 1) ; N (Z = 7) ; C (Z = 6)

Exercice 4

De la même manière que les atomes, les molécules peuvent absorber de la lumière et ainsi passer de l"état

électronique fondamental à un état électronique excité. a) Etablir le tableau récapitulatif de la molécule de H

2CO. En déduire la configuration électronique de

l"état électronique fondamental.

b) La transition de plus basse énergie entraine un léger allongement de la liaison CO, alors que la

deuxième transition entraine un allongement plus considérable. Proposer des configurations

électroniques des états excités résultant des transitions mentionnées, sachant qu"un seul électron est

promu par rapport à l"état fondamental pour chaque configuration.

Exercice 5

Il est toujours possible d"étudier des molécules dans leur géométrie d"équilibre mais aussi dans des géométries

exotiques. Ceci permet par exemple de vérifier si la prédiction VSEPR est en accord avec la théorie des OM. On

admet qu"une molécule adopte la géométrie qui permet de stabiliser au maximum les électrons par rapport à

l"énergie qu"ils ont dans les atomes non liés. Nous allons considérer dans cet exercice la molécule de H

2O. La

structure électronique de la géométrie d"équilibre a déjà été élucidée dans l"exemple introductif.

a) Vous devez établir le tableau récapitulatif des OM de la molécule H

2O dans une géométrie linéaire où

l"atome d"oxygène sera considéré hybridé sp. HBOHA z

b) Comparer les structures électroniques pour les géométries coudée et linéaire et conclure sur la

géométrie préférentielle adoptée par H 2O.quotesdbs_dbs10.pdfusesText_16