[PDF] Fonctions de plusieurs variables - GitHub Pages



Previous PDF Next PDF







Chapitre 8 Fonctions de deux variables

Dé nition 5 : Soit fune fonction de deux ariables v La fonction partielle f x est dé nie par : f x: x7f(x;y) (la ariablev yest alors considérée comme un paramètre) De même la fonction partielle f y est la fonction qui à tout réel yassocie f(x;y)



Leçon 02 – Cours : Fonctions à plusieurs variables

3 1 Fonctions implicites dans le cas de deux variables Tout d'abord expliquons ce qu'est une fonction implicite Lorsqu'on étudie une fonction x → y = f(x), y est explicitement fonction de x, c'est à dire que, connaissant les différentes valeurs de x, on peut calculer directement y



Fonctions de deux variables - unicefr

C’est la fonction qui donne la r´esistance d’un montage en parall`ele de deux r´esistances C’est pour ca que j’ai appel´e les variables R et R0, mais j’aurais aussi bien pu ´ecrire la mˆeme fonction (x,y) 7→ xy x+y Exo 1 Donnez votre exemple favori de fonction de deux variables



Fonctions à deux variables - wwwnormalesuporg

Fonctions à deux variables ECE3 Lycée Carnot 25 janvier 2012 1 Aspect graphique Définition 1 Une fonction à deux variables est une application f : D → R, où D est une sous-ensemble du plan R2 appelé domaine de définition de la fonction f Exemples : La fonction f :(x,y)7→x3+2x2y+xy3−4y2 est une fonction à deux variables définie



Chap 3: Optimisation dune fonction à deux variables

Optimisation d’une fonction à deux variables 1 Optimisation sans contrainte : Soient f : DˆR2R et (a;b) 2D: Définition 1 : Notion maximum 1 On dit que fadmet unmaximum globalen (a ;b )si x y8 2D



D´eveloppements limit´es d’une fonction `a deux variables

D´eveloppements limit´es d’une fonction a deux variables 1 D´eveloppements limit´es d’une fonction `a deux variables Ici, on va traiter seulement le cas de l’ordre 1 et le cas de l’ordre 2 au voisinage du point (a,b)



Fonction de deux variables

La nouvelle fonction de consommation sera alors une fonction de 2 variables C : Yd;B 7C Yd;B Exemple 2 [Fonction d’utilité] On s’intéresse à une économie où deux biens distincts sont disponibles Notons x et y les quantités respectives de ces deux biens On note U(x;y) la fonction d’utilité du consommateur donnant un indice



Fonctions de plusieurs variables - GitHub Pages

de plusieurs (et même de centaines de) variables Voyons un exemple en deux variables Exemple Étant donnés trois points A(1,2), B(3,5) et C(6,1), il s’agit de trouver un point M(x, y) qui «approche au mieux » ces trois points Il faut expliciter une fonction à minimiser pour définir correctement le problème



Optimisation des fonctions de deux variables

Optimisation des fonctions de deux variables Chapitre 2 1 Théorème généraux 1 1 Le théorème de Weirstrass O Théorème 1 Une fonction continue sur un compact D atteint son maximum et son minimum sur D Exemple 1 Trouver le maximum de f (x;y) = x2 y2 +1 sous la contrainte x2 +y2 = 2 Exemple 2 Trouver le maximum de la fonction d

[PDF] fiche de lecture maus

[PDF] biographie art spiegelman

[PDF] bactéries alimentaires pathogènes

[PDF] developpement des micro organisme

[PDF] le palais du grand khan texte

[PDF] urticaire et cycle menstruel

[PDF] urticaire et hormones

[PDF] extrasystoles avant les regles

[PDF] syndrome prémenstruel et tachycardie

[PDF] tachycardie avant regles

[PDF] dermatose auto-immune ? la progestérone

[PDF] palpitation avant les regles

[PDF] extrasystoles pendant les regles

[PDF] amende peche sans permis

[PDF] contravention peche

Fonctions de plusieurs variables - GitHub Pages

Fonctions de plusieurs variables

November 1, 2004

1 Diff´erentiabilit´e

1.1 Motivation

Pour une fonction d"une variablef, d´efinie au voisinage de 0, ˆetre d´erivable en 0, c"est admettre

un d´eveloppement limit´e `a l"ordre 1, f(x) =b+ax+x?(x).

Alorsb=f(0) eta=f?(0).

Interpr´etation g´eom´etrique. La courbe repr´esentative defposs`ede en (0,a) une tangente, la

droite d"´equationy=b+ax.

On veut faire pareil pour une fonction de deux variables. La courbe repr´esentative est remplac´ee

par une surface repr´esentative d"´equationz=f(x,y), la droite tangente par un plan tangent d"´equationz=c+ax+by. La tangence s"exprime en disant que la distance entre le point (x,y,f(x,y)) de la surface et le point (x,y,c+ax+by) du plan est petite devant la distance de (x,y) `a l"origine.

Exemple 1.1f(x,y) =x2+y2.

1.2 Diff´erentiabilit´e d"une fonction de deux variables

D´efinition 1.2Soitfune fonction de deux variables, d´efinie au voisinage de(0,0). On dit quef

estdiff´erentiableen(0,0)si elle admet und´eveloppement limit´e `a l"ordre 1, i.e. si on peut ´ecrire

f(x,y) =c+ax+by+?x

2+y2?(x,y),

o`u?(x,y)tend vers 0 lorsquexetytendent vers 0. Dans ce cas,fadmet des d´eriv´ees partielles en (0,0), et c=f(0,0), a=∂f∂x (0,0),∂f∂y (0,0).

La diff´erentiabilit´e defen un point quelconque(x0,y0)se traduit par le d´eveloppement limit´e

f(x0+u,y0+v) =f(x0,y0) +∂f∂x (x0,y0)u+∂f∂y (x0,y0)v+?u

2+v2?(u,v),

o`u?(u,v)tend vers 0 lorsqueuetvtendent vers 0. Exemple 1.3f(x,y) =x(2-x+y) +y(1-x-y)est diff´erentiable `a l"origine.

En effet,

f(x,y) = 2x+y-x2-y2 = 2x+y+?x

2+y2?(x,y),

1 o`u ?(x,y) =-?x 2+y2 tend vers 0 quandxetytendent vers 0.

Th´eor`eme 1Soitfune fonction de deux variables d´efinie au voisinage de(0,0). Si les d´eriv´ees

partielles ∂f∂x et∂f∂y sont d´efinies au voisinage de(0,0)et continues en(0,0), alorsfest diff´erentiable en(0,0), et son d´eveloppement limit´e `a l"ordre 1 s"´ecrit f(x,y) =f(0,0) +∂f∂x (0,0)x+∂f∂y (0,0)y+?x

2+y2?(x,y).

Exemple 1.4f(x,y) =x(2-x+y) +y(1-x-y)est diff´erentiable en tout point. En effet, on n"a qu"a utiliser le th´eor`eme 1. On peut aussi calculer directement f(x0+u,y0+v) = 2x0+ 2u+y0+v-x20-2x0u-u2-y20-2y0v-v2 = 2x0+y0-x20-y20+ (2-2x0)u+ (1-2y0)v-u2-v2 = 2x0+y0-x20-y20+ (2-2x0)u+ (1-2y0)v+?u

2+v2?(u,v).

1.3 Gradient

D´efinition 1.5Soitfune fonction de deux variables, diff´erentiable tout point d"un domaineD. Songradientest le champ de vecteurs d´efini surDpar ?f: (x,y)?→? ∂f∂x (x,y) ∂f∂y (x,y)? Exemple 1.6Le gradient de la fonction d´efinie surR2parf(x,y) =x2est le champ de vecteurs horizontal?(x,y)f=?2x 0?

1.4 Interpr´etation du d´eveloppement limit´e

Proposition 1.7Sifest diff´erentiable enP, alors pour toute droitet?→P+tvpassant parP, la fonctiont?→f(P+tv)est d´erivable, et ddt f(P+tv)|t=0=?Pf·v. On verra plus loin (th´eor`eme 2) que cette formule est vraie pour toute courbe, et non seulement les droites, sous la forme ddt f(c(t)) =?c(t)f·c?(t).

1.5 Lignes de niveau

D´efinition 1.8On appellelignes de niveaudefles ensembles de la formeLw={(x,y);f(x,y) = w}. Exemple 1.9Les lignes de niveau de la fonctionf(x,y) =x2+y2sont des cercles concentriques. Celles de la fonctionf(x,y) =xysont des hyperboles, `a l"exception de la ligne de niveau 0, qui est la r´eunion de deux droites. 2 Proposition 1.10Le gradient d"une fonction est un vecteur perpendiculaire aux lignes de niveau, pointant dans la direction dans laquelle la fonction augmente. Sa longueur est d"autant plus grande

que la fonction varie rapidement, i.e. que les lignes de niveau sont rapproch´ees. Le gradient indique

la direction de plus grande pente. Preuve.Soitt?→c(t) une ligne de niveau. Alorst?→f(c(t)) est constante, donc 0 = ddt f(c(t)) =?c(t)f·c?(t), ce qui montre que le gradient est orthogonal `a la tangente `a la ligne de niveau. Lorsque l"on se d´eplace dans la direction du gradient, par exemple, part?→c(t) =P+t?Pf, ddt f(c(t))|t=0=?Pf·c?(0) =? ?Pf?2>0, doncfaugmente, d"autant plus vite que? ?Pf?est grand.

Soitvun vecteur unitaire. Alors

ddt f(P+tv)|t=0=?Pf·v est maximum lorsquevest colin´eaire et de mˆeme sens que?Pf, donc?Pfindique la direction de plus grande pente.1.6 G´en´eralisation

De la mˆeme fa¸con, on peut parler de d´eveloppement limit´e et de diff´erentiabilit´e pour une fonction

denvariables (remplacer?x

2+y2par?x

21+···+x2n), puis pour une applicationRn→Rp.

Dans ce cas, les coefficients du d´eveloppement limit´e sont des vecteurs deRp. Exemple 1.11SoitIun intervalle deRetc:I→R2une courbe. Calculer un d´eveloppement

limit´e decen 0, c"est calculer des d´eveloppements limit´es des fonctions coordonn´eesx(t) =a0+

a

1t+t?(t),y(t) =b0+b1t+t?(t), et former le d´eveloppement limit´e vectoriel

c(t) =?a0 b 0? +t?a1 b 1? +t?(t). Proposition 1.12Une applicationF= (f1,...,fp) :Rn→Rpest diff´erentiable si et seulement si chacune de ses composantes l"est.

1.7 La diff´erentielle

D´efinition 1.13SoitF:= (f1,...,fp) :Rn→Rpune application diff´erentiable enP. Sa diff´erentielleenPest l"application lin´eaire deRndansRpqui apparaˆıt comme le terme non

constant du d´eveloppement limit´e `a l"ordre 1 enP. Sa matrice, appel´eematrice jacobienne, a pour

coefficients les d´eriv´ees partielles, J f(P) =( ((∂f

1∂x

1...∂f1∂x

n...... ∂f p∂x

1...∂fp∂x

n) Exemple 1.14SiAest une matrice, alors l"application lin´eairefA:Rn→Rpqu"elle d´efinit est diff´erentiable, et sa matrice jacobienne estAen n"importe quel point. Exemple 1.15Soitf(x,y) = 2x+y-x2-y2. Sa matrice jacobienne est ?2-2x1-2y?. 3 Autrement dit, la matrice jacobienne d"une fonction, c"est son gradient vu comme un vecteur ligne.

Exemple 1.16SoitF(t) =?cos(t)

sin(t)? . Sa matrice jacobienne est?-sin(t) cos(t)?

Autrement dit, la matrice jacobienne d"une courbe, c"est sa d´eriv´ee vue comme un vecteur colonne.

Exemple 1.17SoitF(r,θ) = (rcos(θ),rsin(θ)). Sa matrice jacobienne est ?cos(θ)-rsin(θ) sin(θ)rcos(θ)?

1.8 Matrice jacobienne d"une fonction compos´ee

Il s"agit de g´en´eraliser la formule

(g◦f)?= (g?◦f)f?. Th´eor`eme 2Soientf:Rn→Rpetg:Rp→Rqdes applications. On supposefdiff´erentiable enPetgdiff´erentiable enf(P). Alorsg◦fest diff´erentiable enP, et J g◦f(P) =Jg(f(P))Jf(P).

Preuve.Siv?Rn,

f(P+v) =f(P) +Jf(P)v+?v??(v).

On posew=f(P+v)-f(v). Alors

g(f(P) +w) =g(f(P)) +Jg(f(P))w+?w??(w).

Autrement dit,

g◦f(P+v) =g◦f(P) +Jg(f(P))(Jf(P)v+?v??(v))+?w??(w) =g◦f(P) +Jg(f(P))Jf(P)v+?v??(v),

car?w?/?v?est born´e.Corollaire 1.18SoitIun intervalle deR, soitc:I→R2une courbe dans le plan. Soit

f:R2→Rune fonction sur le plan. Alors (f◦c)?(t) =Jgc?(t) =?c(t)f·c?(t) =∂f∂x (c(t))x?(t) +∂f∂y (c(t))y?(t). Corollaire 1.19Soitf:R2→Rune fonction sur le plan. Soitg:R→Rune fonction d"une variable. Alors J

Corollaire 1.20SoitF:R2→R2,F(r,θ) = (rcos(θ),rsin(θ)), le changement de coordonn´ees

polaires. Soitc:R→R2une courbe param´etr´ee, vue en coordonn´ees cart´esiennes(x(t),y(t))ou

polaires(r(t),θ(t)). Alors la vitesse en coordonn´ees cart´esiennes s"obtient en appliquant la matrice

jacobienne deF`a la d´eriv´ee des coordonn´ees polaires, ?x? y =?cos(θ)-rsin(θ) sin(θ)rcos(θ)?? r? =r?er+θ?reθ. 4

1.9 Condition d"extremum

Proposition 1.21Soitfune fonction `a valeurs r´eelles d´efinie au voisinage d"un pointPdeRn. SiPest un minimum local (resp. maximum local) def, alors le gradient defs"annule enP. Preuve.Casn= 2. SoitP= (x0,y0). A fortiori,x0est un minimum local (resp. maximum

local) de la fonctionx?→f(x,y0), donc sa d´eriv´ee enx0est nulle. Or celle-ci vaut∂f∂x

(P). De mˆeme, ∂f∂x (P) = 0, donc?Pf= 0.Remarque 1.22En g´en´eral, la r´eciproque est fausse.

On peut donner des conditions suivantes plus fortes, faisant intervenir les d´eriv´ees secondes. C"est

l"objet du paragraphe suivant.

2 D´eveloppement limit´e `a l"ordre 2

2.1 Motivation

On s"int´eresse au mouvement dans un champ de forces d´erivant d"un potentielV. Les positions

d"´equilibre correspondent aux points o`u les d´eriv´ees partielles deVs"annulent. Pour qu"une position

d"´equilibrePsoitstable, il vaut mieux queVposs`ede unminimum local strictenP, i.e., que pour v?= 0 assez petit,V(P+v)> V(P). Soitfune fonction d"une variable. Supposons quefadmet un minimum en 0. Alors sa d´eriv´ee f

?(0) s"annule. La r´eciproque n"est pas vraie : la fonction d´efinie surRparf(x) =x3a une d´eriv´ee

quotesdbs_dbs31.pdfusesText_37