[PDF] PRODUIT SCALAIRE DANS LESPACE



Previous PDF Next PDF







PRODUIT SCALAIRE - AlloSchool

Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853 I) Le produit scalaire de deux vecteurs 1° Définitions Définition1 : Soit u et v deux vecteurs du plan Et soient A; B et C trois points du plan tel que : u AB et v AC On appelle produit scalaire de par , noté uv , le nombre réel définit par : Si u 0 ou v 0 alors



Produit scalaire de deux vecteurs du plan Définition Propriétés

Produit scalaire de deux vecteurs du plan Définition Si u et v sont deux vecteurs non nuls, le produit scalaire des vecteurs u et v est le nombre réel défini par: u⋅ v=∥ u∥×∥ v∥×cos u; v Si u= 0 ou v= 0, on pose alors: u⋅ v=0 Propriétés



COURS 1 S LE PRODUIT SCALAIRE - F2School

COURS 1 S LE PRODUIT SCALAIRE 1 DØfinition du produit scalaire de deux vecteurs : On considŁre deux vecteurs u et v quelconque du plan ; on considŁre alors les points A, B et C dØfinis par AB = u et AC = v Le point H est le projetØ orthogonal de C sur la droite (AB)



Chapitre 7 : Produit scalaire de deux vecteurs du plan

Produit scalaire Page 1 Chapitre 7 : Produit scalaire de deux vecteurs du plan I) Produit scalaire de deux vecteurs a) Définition u et v sont deux vecteurs du plan, on appelle produit scalaire de u par v , le nombre réel noté u v égal à : • 0 si l’un des vecteurs est nul • II



Le produit scalaire - Cours et exercices de maths corrigés

Définition du produit scalaire de deux vecteurs Définition 6 Le produit scalaire de deux vecteurs u et v, noté u v , est le nombre réel défini par : u V = Hull Il V Il cos (u, V), si u et v sont non nuls ; e u v = 0, si u=00u v = 0 On appelle carré scalaire de u le nombre = llu 112 REMARQUES :



Produit scalaire - Un cours de mathématiques du Collège au

Produit scalaire 1 Produit scalaire de deux vecteurs 1 1 Définition Définition : Soient et deux vecteurs non nuls Soient A, B et C des points tels que : et Soit H le projeté orthogonal de C sur (AB) On appelle produit scalaire de et et on note (qui se lit scalaire ) le réel définit par :



Produit scalaire – Fiche de cours - Physique et Maths

Produit scalaire – Fiche de cours 1 Le produit scalaire a Définition Le produit scalaire de deux vecteurs non nuls ⃗u et ⃗v est le re el suivant : ⃗u⋅⃗v=‖u⃗‖⋅‖⃗v‖⋅cos(u⃗,⃗v) b Autres expressions du produit scalaire - projeté orthogonal ⃗AB et ⃗CD sont deux vecteurs, C et D se projettent orthogonalement en



Exercices corrigés - AlloSchool

Exercices 4 et 5 : orthogonalité de deux vecteurs et produit scalaire nul Exercice 6 : formule de la médiane Exercice 7 : produit scalaire de vecteurs colinéaires Exercices 8 et 9 : produit scalaire de vecteurs quelconques à l’aide d’une projection orthogonale Exercices 10, 11, 12 et 14 : produit scalaire en fonction des normes de



PRODUIT SCALAIRE DANS LESPACE

Dans le plan, les règles de géométrie plane sur les produits scalaires s'appliquent 3) Expression analytique du produit scalaire Propriété : Soit et deux vecteurs de l'espace muni d'un repère orthonormé Alors Et en particulier : Démonstration : En effet, on a par exemple dans le plan définit par le couple : , et



Chapitre I - ENSA de Marrakech: Ecole dingénieurs

I 3 2 Produit scalaire Le produit scalaire de deux vecteurs non nuls représentés par les bipoints OA et OB est le nombre réel OA OB cos(θ) si l'angle θ désigne celui de AOB Si l'un des vecteurs est nul alors le produit scalaire est nul Dans le cas où aucun des vecteurs n'est nul, cette définition prend la forme suivante : Propriétés

[PDF] bilan de matière tableau d'avancement

[PDF] bilan de matiere 1ere s

[PDF] bilan de matière physique

[PDF] vn un 1 un

[PDF] on considère la suite un définie par u0 1 et pour tout entier naturel n un 1 f un

[PDF] donner les valeurs de u 1 et u 4

[PDF] on considere la fonction f definie sur

[PDF] facture décompte

[PDF] comment lire une facture d'électricité

[PDF] exemple facture edf pdf

[PDF] comment lire facture sonelgaz

[PDF] comment lire une facture en comptabilité

[PDF] différence entre décompte et acompte

[PDF] numero client edf 10 chiffres

[PDF] excel formule moyenne pondérée

PRODUIT SCALAIRE DANS LESPACE 1

PRODUIT SCALAIRE

DANS L'ESPACE

I. Produit scalaire de deux vecteurs

1) Définition

Soit et deux vecteurs de l'espace. A, B et C trois points tels que et Il existe un plan P contenant les points A, B et C.

Définition :

On appelle produit scalaire de l'espace de et le produit égal au produit scalaire dans le plan P.

On a ainsi :

- si ou est un vecteur nul,

Exemple :

Vidéo https://youtu.be/vp3ICG3rRQk

ABCDEFGH est un cube d'arête a.

uvuAB=vAC=uv.uv.ABAC.0uv=uv .cos ;uvuv uv=´´ 2 uvAB DG ABAF ABAB a H 2

2) Propriétés

Les propriétés dans le plan sont conservées dans l'espace. Propriétés : Soit , et trois vecteurs de l'espace. - et sont orthogonaux.

Démonstration :

Il existe un plan P tel que les vecteurs et admettent des représentants dans P. Dans le plan, les règles de géométrie plane sur les produits scalaires s'appliquent.

3) Expression analytique du produit scalaire

Propriété : Soit et deux vecteurs de l'espace muni d'un repère orthonormé . Alors .

Et en particulier : .

Démonstration :

En effet, on a par exemple dans le plan définit par le couple : , et .

On a en particulier : .

Exemple :

Vidéo https://youtu.be/N1IA15sKH-E

On considère le repère de l'espace .

uvw 2 .uuu= ..uvvu = ...uvwu vuw +=+ ...kuvu kvk uv== kÎ.0uv=Ûuvuv x uy z x vy z ,,,Oijk .'''uvx xyy zz=++ 222
.uuuxyz==++ uvx iyj zkxiyjz k xxiixy ij xzi kyxjiy yjj yzj kzxkizyk jzzk k xxyyzz ;ij 2 .1iii== 2 .1jjj== ..0ijji == 2 222
.uuu xxy yzz xyz==++=++ ;,,CCBCDCG 3

Alors : et soit .

Alors .

Les vecteurs et ne sont pas orthogonaux.

II. Vecteur normal à un plan

1) Définition et propriétés

Définition : Un vecteur non nul de l'espace est normal à un plan P lorsqu'il est orthogonal à tout vecteur admettant un représentant dans P. Théorème : Un vecteur non nul de l'espace est normal à un plan P s'il est orthogonal à deux vecteurs non colinéaires de P.

Démonstration :

Elle est incluse dans la démonstration du corollaire qui suit. Au XIXe siècle, le vecteur normal , appelé produit vectoriel, est noté ⋀. Le produit vectoriel a été inventé par un mathématicien allemand, Hermann

Günther Grassmann (1809 ; 1877).

Corollaire : Une droite est orthogonale à toute droite d'un plan si et seulement si elle est orthogonale à deux droites sécantes de ce plan.

Démonstration (exigible BAC) :

- Si une droite est orthogonale à toute droite d'un plan P alors elle est en particulier orthogonale à deux droites sécantes de P. - Démontrons la réciproque : 1 1 1 CE 10 01 0,50 DI 1 1 0,5 DI .111110,50,5CEDI =´+´-+´= CE DI nnnuv 4 Soit une droite de vecteur directeur orthogonale à deux droites et de P sécantes et de vecteurs directeurs respectifs et . Alors et sont non colinéaires et orthogonaux au vecteur . Soit une droite quelconque () de P de vecteur directeur .

Démontrons que () est orthogonale à .

peut se décomposer en fonction de et qui constituent une base de P (car non colinéaires).

Il existe donc deux réels x et y tels que .

Donc , car est orthogonal avec et .

Donc est orthogonal au vecteur .

Et donc est orthogonale à ().

Méthode : Déterminer si un vecteur est normal à un plan

Vidéo https://youtu.be/aAnz_cP72Q4

ABCDEFGH est un cube.

Démontrer que le vecteur est normal au plan

(ABG).

On considère le repère .

Dans ce repère : ,,,,.

On a ainsi :

, et , donc : Donc est orthogonal à deux vecteurs non colinéaires de (ABG), il est donc normal à (ABG). Méthode : Déterminer un vecteur normal à un plan

Vidéo https://youtu.be/IDBEI6thBPU

Dans un repère orthonormé, soit et .

Déterminer un vecteur normal au plan (ABC).

d n 1 d 2 d uvuvn D w D d wuv wxuyv=+...0wnxu nyvn=+= nuvnw d D CF ;,,BBABC BF 1 0 0 A 0 0 0 B 0 1 0 C 0 0 1 F 0 1 1 G 0 1 1 CF 0 1 1 BG 1 0 0 AB .0011110 .0(1)10100 CFBG CFAB CF 11 2,3 21
AB 2 0 2 C 5

On a : et .

Soit un vecteur orthogonal au plan (ABC). Il est tel que : soit

Prenons par exemple, alors et .

Le vecteur est donc normal au plan (ABC).

2) Equation cartésienne d'un plan

Théorème : L'espace est muni d'un repère orthonormé . Un plan P de vecteur normal non nul admet une équation cartésienne de la forme , avec ℝ. Réciproquement, si a, b et c sont non tous nuls, l'ensemble des points tels que , avec ℝ, est un plan.

Démonstration (exigible BAC) :

- Soit un point de P. 2 1 3 AB 1 2 0 AC a nb c .0 .0 nAB nAC 230
20 abc ab 2230
2 330
2 2 bbc ab bc ab cb ab b=1 1c= a=2 2 1 1 n ;,,Oijk a nb c ax+by+cz+d=0 dÎ x My z ax+by+cz+d=0 dÎ A A A x Ay z 6 et sont orthogonaux avec . - Réciproquement, supposons par exemple que (a, b et c sont non tous nuls). On note E l'ensemble des points vérifiant l'équation

Alors le point vérifie l'équation .

Et donc E.

Soit un vecteur . Pour tout point , on a :

E est donc l'ensemble des points tels que .

Donc l'ensemble E est le plan passant par A et de vecteur normal .

Exemple :

Le plan d'équation cartésienne a pour vecteur normal . Méthode : Déterminer une équation cartésienne de plan

Vidéo https://youtu.be/s4xqI6IPQBY

Dans un repère orthonormé, déterminer une équation cartésienne du plan P passant par le point et de vecteur normal . x MyP z AM n.0AMnÛ= 0 0 AAA AAA axxb yyc zz axbyc zaxby cz

Ûax+by+cz+d=0

d=-ax A -by A -cz A a¹0 x My z ax+by+cz+d=0 ;0;0 d A a ax+by+cz+d=0 AÎ a nb c x My z .000 d

AMna xby cz axbyc zd

a x My z .0AMn=n x-y+5z+1=0 1 1 5 n 1 2 1 A 3 3 1 n 7 Une équation cartésienne de P est de la forme . Le point A appartient à P donc ses coordonnées vérifient l'équation : donc .

Une équation cartésienne de P est donc .

3) Positions relatives d'une droite et d'un plan

Méthode : Déterminer l'intersection d'une droite et d'un plan

Vidéo https://youtu.be/BYBMauyizhE

Dans un repère orthonormé, le plan P a pour équation .

Soit et .

1) Démontrer que la droite (AB) et le plan P sont sécants.

2) Déterminer leur point d'intersection.

1) Un vecteur normal de P est .

(AB) et P sont sécants si et ne sont pas orthogonaux. On a Comme , on conclut que (AB) et le plan P ne sont pas parallèles et donc sécants.

2) Une représentation paramétrique de la droite (AB) est :

3x-3y+z+d=0

313210d´--´ ++=

d=8

3x-3y+z+8=0

2x-y+3z-2=0

1 2 3 A 1 2 0 B 2 1 3 n n AB 2 0 3 AB .223350ABn=-´+´=¹ 8 avec t réel. Le point intersection de (AB) et de P vérifie donc le système suivant :

On a donc

soit .

D'où

Ainsi la droite (AB) et le plan P sont sécants en .

4) Positions relatives de deux plans

Méthode : Déterminer l'intersection de deux plans

Vidéo https://youtu.be/4dkZ0OQQwaQ

Dans un repère orthonormé, les plans P et P ' ont pour équations respectives et .

1) Démontrer que les plans P et P' sont sécants.

2) Déterminer une représentation paramétrique de leur droite d'intersection d.

x=1-2t y=2 z=-3+3t x My z x=1-2t y=2 z=-3+3t

2x-y+3z-2=0

2122 33 320 tt--+-+-=

5t-11=0

t= 11 5 x=1-2´ 11 5 17 5 y=2 z=-3+3´ 11 5 18 5 1718
;2; 55
M -x+2y+z-5=0

2x-y+3z-1=0

9

1) P et P' sont sécants si leurs vecteurs normaux ne sont pas colinéaires.

Un vecteur normal de P est et un vecteur normal de P' est . Les coordonnées des deux vecteurs ne sont pas proportionnelles donc leurs vecteurs ne sont pas colinéaires.

2) Le point de d, intersection de P et de P', vérifie donc le système suivant :

On choisit par exemple x comme paramètre et on pose . On a alors : Ce dernier système est une représentation paramétrique de d, avec ℝ. Propriété : Deux plans sont perpendiculaires lorsqu'un vecteur normal de l'un est orthogonal à un vecteur normal de l'autre. - Admis - 1 2 1 n 2quotesdbs_dbs29.pdfusesText_35