[PDF] SUITES GEOMETRIQUES - maths et tiques



Previous PDF Next PDF







Exprimer une fonction sans valeur absolue

Exprimer une fonction sans valeur absolue Onconsidèrela fonction f définie surRpar f ( x )= x −2+−3 x +1 Enutilisant la définition d’une valeur absolue,on obtient :



II CALCUL LITTÉRAL

5 Exprimer en fonction de n, le nombre entier suivant n 6 Exprimer en fonction de n, le nombre entier précédent n 7 Exprimer en fonction de n, les deux nombres entiers suivants n 8 Exprimer en fonction de n, les deux nombres entiers précédents n 9 Exprimer en fonction de n, le tiers de n 10 Exprimer en fonction de n, le cube de n



Exercices corrigés EXERCICE 2

Exprimer b en fonction de a, U0, R2, et R1 4- On souhaite inverser la tension uθθθ' pour obtenir la tension uθθθ'' qui s’écrit : uθθθ'' = bθθθ Représenter un montage à amplificateur opérationnel assurant cette fonction et qui complète le conditionneur + - ∞ + A1 + - ∞ + A2 R2 R1 I R1 Rθθθ uθθθ uθθθ u-U θθθ



Séquence : Exprimer la fonction dusage

• Le prof note les mots clé (fonction, Sert à, se déplacer, verbe d'action) 10 • Le prof finit par écrire au tableau « Le vélo sert à se déplacer » • Rédaction d'un texte en accord avec les élèves sur la fonction d'usage d'un objet



Exprimer en fonction de

Exprimer en fonction de x Sur internet, une BD manga coûte 6,90 € avec 10 x€ de frais de port Exprime le prix à payer en fonction du nombre de livres achetés Correction J'appelle x le nombre de livres achetés 6,90 € l'un font 6,90 × x pour les livres achetés Avec les frais de port on obtient 6,90 ×x+10 Le prix de xlivres est 6



SUITES GEOMETRIQUES - maths et tiques

3) Exprimer u n et v n en fonction de n 4) Déterminer le plus petit entier n, tel que u n



FONCTION TRANSMETTRE - AlloSchool

FONCTION TRANSMETTRE EX6 : Un réducteur se compose d’un renvoi d’angle Z 1 = 25 dents ; Z 2 = 25 dents et un système roue et vis sans fin à 3 filets ; Z 9 = 34 dents 1- Quelle est le sens d’hélice de la vis sans fin 8 (drite ou gauche) 2- Compléter le tableau des sens de rotation des pièces : Rotation de la pièce autour



Simplification des expressions contenant des valeurs absolues

fonction précédente Réponse : fx()≤5 1er cas : x ≤2 Alors : () 4 fx ≤⇔59− x+ 17 ≤2⇔≥ 3 []4 S 1 = 3,2 2e cas : 2≤≤x 3 Alors : () 28 fx≤⇔ 51 x−23 ≤⇔11 28 11 [28] S 2 =2, 11 3e cas : x ≥3 Alors : () 22 fx≤⇔ 59 x−17 ≤⇔2 9 Il est impossible d’avoir à la fois x ≥3 et 22 x ≤− 9 Donc : S



Exercices de mathématiques sur la fiabilité de tests d’hypothèses

fonction de la prévalence x est donnée par la fonction f définie pour x∈[0;1] par : f (x)= 45x 44x+1 1/ Dans cette question, on suppose que la prévalence x est égale à 0,05 Cela signifie que 5 de la population ont été infectés par le virus Calculer f(0,05) Puis interpréter le résultat dans le contexte de l’exercice

[PDF] un+1 = un + 1/un

[PDF] montrer qu'une suite est décroissante

[PDF] un+1/un suite géométrique

[PDF] calcul de pente exercices cm2

[PDF] formule de topographie

[PDF] exercice densité 6e

[PDF] distance point plan formule

[PDF] distance d'une droite ? un plan

[PDF] distance point plan demonstration

[PDF] distance d'un point ? un plan terminale s

[PDF] distance d'un point ? un plan produit vectoriel

[PDF] calculer la distance du point o au plan abc

[PDF] séquence course longue cm1

[PDF] unité d'apprentissage course longue cycle 3

[PDF] séquence course longue cycle 3

SUITES GEOMETRIQUES - maths et tiques

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frSUITES GEOMETRIQUES I. Rappels et expression du terme général Méthode : Exprimer une suite géométrique en fonction de n Vidéo https://youtu.be/WTmdtbQpa0c On place un capital de 500€ sur un compte dont les intérêts annuels s'élèvent à 4% par an. On note un la valeur du capital après n années. 1) Calculer u2 et u3. 2) Quelle est la nature de la suite (un) ? On donnera son premier terme et sa raison. 3) Exprimer un+1 en fonction de un. 4) Donner la variation de la suite (un). 5) Exprimer un en fonction de n. 1) Chaque année, le capital est multiplié par 1,04. u0 = 500 u

1 =1,04×500=520 u 2 =1,04×520=540,80 u 3 =1,04×540,80=562,432

2) (un) est une suite géométrique de premier terme u0 = 500 et de raison q = 1,04. 3)

u n+1 =1,04u n

4) q = 1,04 > 1 donc la suite (un) est croissante. 5) Après 1 an, le capital est égal à : u

1 =1,04×500

Après 2 ans, le capital est égal à : u

2 =1,04 2

×500

Après 3 ans, le capital est égal à : u

3 =1,04 3

×500

De manière générale, après n années, le capital est : u n =1,04 n

×500

II. Somme des termes Méthode : Calculer la somme des termes d'une suite géométrique On considère la suite géométrique (un) de raison q = 2 et de premier terme u1 = 5. 1) Exprimer un en fonction de n. 2) A l'aide de la calculatrice, calculer la somme S =

u 5 +u 6 +u 7 +...+u 20 Propriété : Si (un) est une suite géométrique de raison q, on a :

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1) u

n =5×2 n-1

2) On saisit sur la calculatrice : Sur TI : som(suite(5*2X-1,X,5,20)) Sur Casio : La calculatrice affiche 5 242 800. Donc S =

u 5 +u 6 +u 7 +...+u 20

= 5 242 800. III. Comparaison de suites Méthode : Comparer deux suites Une banque propose deux options de placement : - Placement A : On dépose un capital de départ. Chaque année, la banque nous reverse 6% du capital de départ. - Placement B : On dépose un capital de départ. Chaque année, la banque nous reverse 4% du capital de l'année précédente. On suppose que le placement initial est de 200€. L'objectif est de savoir à partir de combien d'années un placement est plus intéressant que l'autre. On note un la valeur du capital après n années pour le placement A et vn la valeur du capital après n années pour le placement B. 1) a) Calculer u1, u2 et u3. b) Calculer v1, v2 et v3. 2) Quelle est la nature des suites (un) et (vn) ? On donnera le premier terme et la raison. 3) Exprimer un et vn en fonction de n. 4) Déterminer le plus petit entier n, tel que

u n . Interpréter ce résultat. 1) a) Avec le placement A, on gagne chaque année 6% de 200€ = 12€. u0 = 200 u

1 =200+12=212 u 2 =212+12=224 u 3 =224+12=236 b) Avec le placement B, chaque année le capital est multiplié par 1,04. u0 = 200 u 1 =1,04×200=208 u 2 =1,04×208=216,32 u 3 =1,04×216,32≈224,97

2) (un) est une suite arithmétique de premier terme u0 = 200 et de raison r = 12. (vn) est une suite géométrique de premier terme v0 = 200 et de raison q = 1,04.

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr3) u

n =200+12n v n =200×1,04 n

4) Saisir l'expression du terme général, comme pour une fonction : Paramétrer la Table avec un pas de 1 et afficher la table : Le plus petit entier n, tel que

u n est 21. Cela signifie qu'à partir de 21 années, le placement B devient plus rentable que le placement A. Décibels : Téléphones VS Avion : Vidéo https://youtu.be/WTmdtbQpa0c RÉSUMÉ (un) une suite géométrique - de raison q positive - de premier terme u0 positif. Exemple :

q=2 et u 0 =4

Définition

u n+1 =q×u n u n+1 =2×u n Le rapport entre un terme et son précédent est égal à 2. Propriété u n =u 0 ×q n u n =u 1 ×q n-1 u n =4×2 n Variations Si q > 1 : (un) est croissante. Si 0 < q < 1 : (un) est décroissante. q=2>1

La suite (un) est croissante. Représentation graphique Horsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs28.pdfusesText_34