[PDF] PROPRIÉTÉS DES SECTIONS



Previous PDF Next PDF







Conduite pratique du calcul d’un CDG

Centre de gravité - Triangle rectangle Centre de gravité - Disque Centre de gravité - Demi-disque Somme des moments statiques Voici une section en I décomposée en trois rectangles Pour la section ci contre, le moment statique par rapport à l’axe xx’ est : Dans le cas d’une section creuse, on peut soustraire les parties vides :



Centre de gravité

celle-ci Le centre de gravité, où cette force s'applique, se trouve nécessairement en un point situé le long de cette verticale En recommencent cette opération en changeant plusieurs fois l’épingle de place, comme le centre de gravité doit se trouver sur chacune d'elle, c'est au point de rencontre de ces droites que doit se trouver le



G 14110/1 F Méthode de calcul pour la hauteur du centre de

Méthode de calcul pour la hauteur du centre de gravité h R La hauteur du centre de gravité par rapport au sol pour véhicules remorqués (à vide, en charge) incluant d’une façon simple trois parties : le châssis, la carrosserie et le chargement (en charge) Cette méthode peut être utilisée par les constructeurs de remorques qui n



Calcul des caractéristiques d’une poutre de sectio[]

• position du centre de gravité : CDG_Y, CDG_Z • moments et produit d'inertie d'aire, au centre de gravité G dans le repère GYZ : IY_G, IZ_G, IYZ_G • Dans le repère principal d'inertie Gyz de la section droite, dont la dénomination correspond à celle utilisée à la description des éléments de poutre de fibre neutre Gx [U4 24 01]



Étude des déplacements du centre de gravité en flexion

68 Ann Kinésithér , 1985, t 12, n° 3 TABLEAU II - Amplitudes de déplacement du centre de gravité en moyenne Hommes Femmes Lent RapideLent AP GDAP Réf



PROPRIÉTÉS DES SECTIONS

Le calcul du moment d'inertie passe toujours par celui du centre de gravité Dans cet exemple, le centre de gravité avait déjà été trouvé, donc nous ne l'avons pas refait 8 3 MODULE DE SECTION ET RAYON DE GIRATION 8 3 1 Module de section Une propriété des sections fréquemment employée dans la conception des poutre est le module de



D:My FilesCoursA - SyllabusSyllabus Méca ECAMMecaChap4

fig 4 3 - Position du centre de gravité fig 4 4 - Expression analytique de la position En effet, suspendre le système en A1 et mener la verticale d1 revient en fait à considérer en tous



Cours caractéristiques des sections

Remarque : pour les sections possédant un axe de symétrie, le centre de gravité se situe obligatoirement sur cet axe (donc si la section possède 2 axes de symétrie, le centre de gravité est à l’intersection Chaque section ne possédant qu’un centre de gravité, tous les axes de symétrie d’une section son concourants en un point)



INTRODUCTION À L’ANALYSE FACTORIELLE DES CORRESPONDANCES

de l’origine 0 se trouve au centre de gravité G des quatre points J, AF, AM et V Donc, l’axe OG est un axe d’inertie du nuage (axe trivial) Enfin, les moments d’inertie des deux nuages issus des deux analyses sont égaux entre eux, leur valeur commune n’est autre que le lien ou information mutuelle entre deux caractères



Généralités pour le pratiquer en sécurité 16

Un outil de calcul de charge est disponible sur le site de l’INRS N’hésitez pas, il est gratuit 2 Utiliser le centre de gravité Pour garder la stabilité : il faut que le point d’accrochage de l’élingue se situe au-dessus du centre de gravité, et placer le centre de gravité de la charge à la verticale du crochet 3

[PDF] calcul centre de gravité triangle

[PDF] calcul centre de gravité volume

[PDF] calcul centre de gravité intégrale

[PDF] enduit chaux sable proportion

[PDF] dosage enduit ciment sur parpaing

[PDF] dosage enduit ciment chaux

[PDF] enduit chaux sable exterieur

[PDF] dosage enduit traditionnel

[PDF] dosage enduit ciment chaux interieur

[PDF] melange chaux ciment sable

[PDF] enduit sable ciment

[PDF] calcul sigma en ligne

[PDF] sigma 1 math

[PDF] les constants physique

[PDF] permittivité du vide valeur

PROPRIÉTÉS DES SECTIONS 8

PROPRIÉTÉS DES SECTIONS

8.1 AXE NEUTRE, CENTROÏDE ET MOMENT STATIQUE

8.1.1 Généralités

Dans l'étude des déflexions des poutres ainsi que du flambage des colonnes, on est amené à utiliser

l'une ou l'autre des propriétés des sections droites, qui sont des caractéristiques purement

géométriques. On retrouve: • Axe neutre d'une surface; • Centre de gravité d'une surface; • Moment statique d'une surface; • Moment d'inertie; • Module de section; • Rayon de giration.

8.1.2 Surface neutre et axe neutre

Lorsqu'une poutre est soumise à des forces qui tendent à la courber, les fibres situées a u-dessus (ou

au-dessous) d'un certain plan de la poutre sont en compression et elles se raccourcissent, tandis que

les fibres situées au-dessous (ou au-dessus) de ce plan sont tendues et elles s'allongent. Le plan

intermédiaire en question est appelé surface neutre de la poutre (voir figure 8.1).

Pour une section droite de la poutre, la li

gne correspondant à la surface neutre s'appelle axe neutre

de cette section. L'axe neutre passe toujours par un point particulier "cg" de la section droite d'une

poutre nommé centroïde ou centre de gravité de cette section. 137
Axe neutre (A.N.): C'est le plan qui ne subit aucun allongement pendant la flexion d'une poutre.

Fig. 8.1

L'axe neutre A.N. passe par le centre de gravité ou centroïde.

8.1.3 Centre de gravité (cg)

Le centre de gravité (cg) ou centroïde d'un corps ou d'une surface est un point imaginaire où toute

cette surface peut être considérée comme concentrée. C'est aussi le point où le poids d'un corps est

concentré.

Si un corps est homogène, c'est-à-dire constitué d'un seul matériau, le cg dépend seulement de la

forme du corps. Si un corps possède un axe de symétrie, son cg est situé sur cet axe (fig. 8.2).

Fig. 8.2

138

L'axe de symétrie partage le corps en deux parties de même surface, de même poids. Si un corps

possède au moins deux axes de symétrie (ou médiane), son cg se trouve au point d'intersection de

ces axes. Le cg n'est pas toujours dans la matière. La figure 8.3 illustre le centre de gravité de

différentes surfaces régulièrement utilisées.

Fig. 8.3

La position de quelques autres surfaces est donnée dans les tableaux à la fin du chapitre. D'autres cas

particuliers peuvent être retrouvés dans les "Handbooks" ou livres spécialisées. 139

8.2 MOMENT D'INERTIE

8.2.1 Moment d'inertie

Considérons une surface plane A dans laquelle

un élément de surface a i infiniment petit est indiqué. Cet élément se trouve à une distance d i d'un axe quelconque "o". On appelle moment d'inertie I i de l'élément de surface a i par rapport à l'axe considéré "o", le produit de cet élément par le carré de la distance d i A a i d i o

Fig. 8.7

I i(o) = a i x d i 2 (8.3 a) Si la surface A est subdivisée en N éléments infiniment petits a 1 , a 2 , a 3 , ... , a N dont les distances respectives à l'axe sont d 1 , d 2 , d 3 , ... , d N alors le moment d'inertie de cette surface par rapport au même axe "o" est donné par la relation suivante: I o = I 1(o)quotesdbs_dbs2.pdfusesText_3