[PDF] Electromagnétisme A Particule chargée dans un champ



Previous PDF Next PDF







P : MOUVEMENT D’UNE PARTICULE CHARGÉE DANS UN CHAMP

3: dans un trièdre direct, chaque vecteur est égal au produit vectoriel des deux autres Ø ]⃗E^⃗=_⃗ Ø ^⃗E_⃗=]⃗ Ø _⃗E]⃗=^⃗ II La force de Lorentz : 1 Expression de la force de Lorentz : Une particule chargée de charge q>0, animée d’une vitesse e⃗, pénètre dans une région où règne un champ magnétique g>⃗



Electromagnétisme A Particule chargée dans un champ

V - Mouvement d'une particule chargée dans un champ magnétique uniforme; équation horaire Particule de charge q et de masse m à l'origine O du repère, et de vitesse initiale v0 contenue dans le plan (yOz), de coordonnées (0, v 0 cos α, v 0 sin α) En t, la particule est en M ( x(t), y (t), z(t) )



Chapitre 42a – Trajectoire d’une particule dans un champ

« bouteille magnétique ») d’une particule chargée dans un champ magnétique non constant Vent solaire et aurore polaire Le Soleil expulse près de kg1×10 9 par seconde de matière sous forme de plasma 6 constitué en grande majorité d’hydrogène ionisé ( H+), d’hélium ionisé (He ) et d’électron



Exercice 1 Exercice 2 : particule chargée dans une région ou

du bateau plong´e dans l’eau est Ve Soit ρe la masse volumique de l’eau Quelle est la condition pour que le bateau flotte sur l’eau? Exercice 2 : particule chargée dans une région ou règne un champ magnétique constant Une particule M de charge q et de masse m est soumise a l’action d’un champ magn´etique constant B~



1 Force de Lorentz - LN-SPE-2

3 Mouvement d’une particule chargée dans un champ magnétique uniforme et constant 3 1 Cadre de l’étude



I Mouvement hélicoïdal d’une particule chargée dans un champ

I Mouvement hélicoïdal d’une particule chargée dans un champ magnétique Un électron arrive dans une région de l’espace où un règne un champ magnétique uniforme et munie d’un repère orthonormé La vecteur vitesse de l’électron, à son entrée dans la zone de champ est :



PHYSIQUE QUANTIQUE AVANCÉE - polytechnique

MOUVEMENT CLASSIQUE D’UNE PARTICULE CHARGÉE A Il est uniforme B La trajectoire est circulaire C La trajectoire est une hélice D La trajectoire est une spirale On considère en physique classique le mouvement d’une particule chargée placée dans un champ magnétique constant et uniforme



Electromagnétisme A - LESIA

III - Mouvement d'une particule chargée dans un champ électrique constant Supposons qu'une particule ponctuelle de charge q et de masse m soit soumise à la seule force électrique F = q E, où E est invariable dans l'espace et dans le temps Le principe fondamental de la dynamique s'écrit: m d² OM /dt² = m d v/dt = q E



˘ ˇˆ

Title (Microsoft Word - 06 Mouvement d'une particule charg\351e dans un champ \351lectro\205) Author: Ismael Created Date: 4/8/2006 7:56:13



Mécanique5–Travauxdirigés Langevin-Wallon,PTSI2017-2018

Exercice 5 :Électron dans un champ électromagnétique [ENAC 2016, ] L’épreuve écrite du concours ENAC est un QCM sans calculatrice Pour chaque question, entre 0 et 2 propositions sont justes Unélectrondemassem e ’10−30 kg etdechargee’−2 ·10−19 C pénètre,avecunvecteurvitesse # v 0,dansune

[PDF] exercice mouvement d'une particule chargée dans un champ magnétique uniforme

[PDF] mouvement d'une particule chargée dans un champ magnétique uniforme mpsi

[PDF] exercices corrigés mouvement d'une particule chargée dans un champ magnétique

[PDF] mouvement d'une particule chargée dans un champ magnétique uniforme pdf

[PDF] mouvement d'une particule chargée dans un champ électrique uniforme terminale s

[PDF] interprétation champ visuel

[PDF] champ visuel statique

[PDF] champ visuel humphrey 24-2

[PDF] champ visuel de humphrey

[PDF] champ visuel octopus interprétation

[PDF] perte champ visuel

[PDF] champ visuel goldmann prix

[PDF] champ visuel automatisé humphrey

[PDF] analyse du champ visuel

[PDF] champ visuel thg limite

Electromagnétisme A

Particule chargée dans un champ électrique et dans un champ magnétique

Sommaire

Force de Lorentz

Travail, puissance de la force de Lorentz et énergie mécanique

Application: le canon à électrons

Equations horaires du mouvement d"une charge dans un champ électrique constant Applications: écran cathodique, expérience de Millikan de quantification de la charge Particule chargée dans un champ magnétique: pulsation et rayon de giration Applications: effet miroir, séparation isotopique, chambre à bulles, cyclotron, synchrotron Equations horaires du mouvement d"une charge dans un champ magnétique constant

Application: guidage des particules en mouvement

Oscillateur harmonique dans un champ magnétique: effet Zeeman Oscillateur harmonique excité par une onde électromagnétique: profil d"amortissement en fréquence, raies spectrales I - Force de Lorentz subie par une charge dans un champ électrique et dans un champ magnétique Une particule de charge q mobile, de vitesse v, plongée dans un champ électrique Eet dans un

champ magnétique B, subit la force de Lorentz:F= q (E+ vLB)Permet de définir la nature du champ électrique Eet du champ magnétique Bpar leur action sur

une charge q q E= force électrique , colinéaire au champ électrique (opposée ou même sens selon signe de q). q vLB= force magnétique , orthogonale à la fois à la vitesse vet au champ magnétique B.

Rappel sur le produit vectoriel:

||vLB|| = v B |sin(v,B)|

Si v= 0ou si v// B, pas de force magnétiqueUnités: Fen N, Een V/m; Ben T; q en C; ven m/s.

Rappel: charge élémentaire

e = 1.6 10 -19

C; proton: charge +e, électron: charge -e.

Dans tout le cours, les vecteurssont en caractères gras vLBorthogonal au plan (v, B) Règle de la main droitevers vous opposé II - Travail de la force de Lorentz et énergie mécanique Le travail élémentaire d"une force Fappliquée en M est le produit scalaire dW= F.dOM(unité: Joule) oùdOMest un déplacement élémentaire La puissance de la force Fest P= dW/dt = F.v avec v= dOM/dt (vecteur vitesse)

F.v= q (E+ vLB).v

comme(vLB).vest un produit mixte nul (vorthogonal àvLB), alors La force magnétique ne travaille pas; seule la force électrique travaille

La puissance de la force de Lorentz est

P= q E.v

(unité: W) vB vLB Bv vLB pouceindex majeurpouce index majeur Si m désigne la masse de la particule, le PFD implique: m dv/dt = q E+ q (vLB) Effectuons le produit scalaire avec v: d(½ m v²)/dt = q E.v

Si Edérive du potentiel électrostatique V

(unité: Volt), on a E= -grad(V) or dV= grad(V).dOM (par définition) d"où dV/dt = -E.v

Donc la quantité E

m= ½ m v² + q V est conservée

C"est l"énergie mécanique

de la particule chargée. E c= ½ m v²est l"énergie cinétique et E p= q V est l"énergie potentielle (unité: Joule).

Remarque: en présence de frottements, E

mn"est plus conservée et diminue.

Application: le canon à électrons (accélération)Métal chauffé(cathode temp T) potentiel

V = 0

Vitesse

d"émission thermique des

électrons

v0

Émission

d"électrons

Potentiel

V > 0

Vitesse des

électrons

v à déterminer

½ mv² - e V = ½ mv

0² + 0 = constante

Comme v0<< v v = (2 e V / m) 1/2

V = 10 000 V

v = 0.2 C

½ mv

0² = 3/2 k T (k constante de Boltzman) v

0= (3 k T / m)

1/2

T = 1000 K v

0= 0.0007 C

v0<< C

Accélération

E III - Mouvement d"une particule chargée dans un champ électrique constant

La particule de charge q et de masse m est soumise à la seule force électrique F= q E, oùEest

invariable dans l"espace et dans le temps

Le PFD s"écrit:

m d²OM/dt² = m dv/dt = F= q E

L"accélération est

q E / m ce qui s"intègre vectoriellement et donne les équations horaires v(t) = dOM/dt = (q E / m) t+ v 0 oùv

0est la vitesse initiale

de la charge.

OM(t) = (½ q E / m) t²+ v

0t + OM

0 où M

0est la position initiale

de la charge. Conclusion: le champ électrique accélère ou ralentit une charge dans son mouvement (dépend du sens de la force q Epar rapport àv 0) v0

F = qE

mouvement accéléré

F = qE

mouvement ralenti Exemple:la charge a pour coordonnées [x(t), y(t)] et pour vitesse [v x(t), v y(t)] dans le repère (xOy); en t=0, elle est au point O et possède la vitesse initiale v 0[v

0cos(α), v

0 sin(α)]

vx(t) = v

0cos(α) mouvement à vitesse constante

selon Ox v y(t) = (q E /m) t + v

0 sin(α) mouvement accéléré ou ralenti

selon Oy x(t) = v

0cos(α) t

y(t) = (½ q E / m) t² + v

0sin(α) t

équation de la trajectoire:

y = (½ q E / m) (x / v

0 cos(α))² + x tan(α)

Il s"agit d"une parabole. Si α= 0 (Eorthogonal àv

0), y = (½ q E / m v

0² ) x²

Application1 : oscilloscope à écran cathodique

Eest créé par des plaques parallèles

distantes de d, de longueur l et de différence de potentiel U x = (½ q E x/ m v

0²) l² où E

x= U x/d y = (½ q E y/ m v

0²) l² où E

y= U y/d x, y proportionnels àU x, U y

Ci contre: variété de courbes de

Lissajous obtenues en appliquant

aux plaques de déflexion x et y les tension U x= cos(p t)

Uy=sin(q t)

Pour p, q entiers (p = q donne un

cercle)

Plaques de déflexion

E x E yl l Application 2: expérience de Millikan sur la quantification de la charge mgq E V>0 E

V=0Goutte sphérique d"huile

rayon r, densitér charge q < 0 -6phr v

PFD: m dv/dt = (4/3pr

3r) g - 6phr v +q E = 0 à l"équilibre poids force de frottement force électrique

E = -Ee

z

6phr v = (4/3 pr

3 r) g + q E

v z= -(1/6phr ) (4/3 pr

3 rg+ q E)

1)

E = V/d = 0

la mesure de v zdonne le rayon r de la goutte

2) On fixe E = V/d tel que

vz= 0 q = - 4/3 pr

3 rg / E

Résultat: on trouve statistiquement que la charge q est multiple d"une même quantité, la charge de l"électron - e = - 1.6 10 -19 C v d liquide visqueux z IV - Mouvement d"une particule chargée dans un champ magnétique; pulsation gyromagnétique et rayon de giration

Le PFD s"écrit:

m dv/dt = q vLB Le produit scalaire avec vdonne d(½ m v²) /dt = 0.

L"énergie cinétique de la particule est constante. La norme ||v|| du vecteur vitesse est invariable.Supposons Binvariable dans le temps.

Considérons dérivée du produit scalaire v.Bpar rapport au temps: d(v.B)/dt = dv/dt . B= q/m (vLB) . B = 0 puisque vLB etB sont orthogonaux. On en déduit que le produit scalaire v.Best invariable dans le temps .v B vLB orthogonal au plan(v, B)

Posons:

v = v //+ v v//dans la direction du champ magnétique v┴dans le plan orthogonal au champ Conséquence pour un champ magnétique uniforme et constant v//B = constante v// = constante v² = v //² + v ┴² = constante v┴= constante Si v //= 0 alors m v ┴²/ R = q v ┴B v ┴= ΩR

Le mouvement est plan et circulaire

de rayon de courbure

R = |v

La quantitéΩ=|q B / m| porte le nom de pulsation gyromagnétique

C"est une vitesse angulaire

(unité: rd/s) de rotation dans un plan orthogonal au champ B. Si v //est non nul

Le mouvement est une hélice de rayon R

dont l"axe est la direction du champ magnétique; son pas est h = v //T = v //(2π/Ω); la vitesse de dérive sur l"axe de l"hélice est v Conclusion: les charges sont déviées et guidées par un champ magnétique. L"énergie cinétique de la particule ne varie pas. B v// v┴h

Applications: 1 - le phénomène de piégeage de charges par miroir magnétique dans la couronne solaire

A la surface du Soleil, le phénomène de miroir magnétique se produit lorsqu"une particule chargée se déplace d"une zone de champ magnétique B faible (sommet d"une arche magnétique) vers ses pieds d"ancrage où B est fort . La vitesse de dérive v //, maximale au sommet de l"arche, diminue vers ses pieds, peut s"annuler et s"inverser.

2 - séparation isotopique

par un champ magnétique

Pour q, B, v

0donnée,

R proportionnel à la masse m

(les isotopes diffèrent par le nombre de neutrons) m 1 m 2quotesdbs_dbs15.pdfusesText_21