[PDF] Centre géométrique, isobarycentre Centre de masse, centre d



Previous PDF Next PDF







La géométrie des tétraèdres - SBPM

La géométrie des tétraèdres PhilippeTILLEUIL CollègeSainteMarie-Mouscron S B P M —27août2013 PhilippeTILLEUIL Lagéométriedestétraèdres S B P M —27août2013 1/63



Centre géométrique, isobarycentre Centre de masse, centre d

Tétraèdre régulier Distance du centre de gravité à la base: centre géométrique ou centre de gravité se situe à l'intersection des droites joignant un sommet au centre géométrique de la face opposée Ces droites sont les médianes du tétraèdre Pour tout tétraèdre, les médianes sont partagées en 1/4, 3/4 par le centre



Tétraèdres équifaciaux, ou disphénoïdes

Figure 4 : Du cube au tétraèdre régulier, par troncage de quatre coins du cube Figure 5 : Numérotation des sommets du cube t les segments 8 9 et 11 12 se confondent pour donner la diagonale 3 1, et de même avec trois autres diagonales Finalement on obtient le tétraèdre régulier 6 1 3 4 for(h=0;h



TétraAide - Free

• triangle équilatéral (construction et propriétés), • géométrie de l'espace : pyramide régulière et tétraèdre régulier, • calculs de périmètres, d'aires et de volumes, • pavages du plan et d'un solide Fichiers fournis : • Affiche format A4 et Tétra'Aides de longueur d'arêtes 9,5 cm à 4 couleurs ou sans couleur, avec



Les polyèdres réguliers - Free

Tétraèdre régulier On a calculé) > , et nous dit que notre polyèdre est formé de 4 triangles équilatéraux identiques On a dessiné un tétraèdre (fig 2 1), il faut encore montrer que le tétraèdre régulier existe bel et bien Pour cela, commençons par étudier un triangle équilatéral (fig 2 2) Dans ce triangle, * est le



Solides de Platon, solides d’Archimède, solides de Catalan

moitié On les appelle les symétries du tétraèdre C’est aussi le nombre de permutations de 4 objets Le groupe de permutations S4 de 4 éléments est aussi le groupe de symétries du tétraèdre régulier 1 7 Le tétraèdre régulier est auto-dual, autrement dit il admet comme dual un tétraèdre régulier



Titre : Le volume dune pyramide et le calcul intégral

mesure (le volume) du tétraèdre régulier en utilisant les propriétés de la grandeur à savoir son invariance par découpe, mais permet aussi d’entraîner et d’utiliser la résolution algébrique d’équations dans un contexte très différent de ceux habituellement rencontrés



DM 8 Correction 12 mars 2007 09:33:09

5 2 Orthogonalité dans un tétraèdre régulier (page 310) A, Notions utilisées ' Propriétés du triangle équilatéral ' Relation de Chasles pour les vecteurs ' Propriétés de bilinéarité du produit scalaire ' Théorème de Pythagore ' Isobarycentre de trois ou quatre points ' Caractérisation vectorielle du milieu d'un segment B



Cadrans sur polyèdres réguliers

Tétraèdre Hexaèdre ou Cube Octaèdre Dodécaèdre Icosaèdre Le nombre de faces du solide, 4, 6, 8, 12, ou 20, est dans le préfixe du nom du solide : tétra pour quatre, hexa pour six — un cube est un hexaèdre régulier —, octa pour huit, dodéca pour douze, icosa pour vingt L’adjetif « régulier » sera souvent impliite dans ette



Géométrie dans lespace

Fondamental : Propriétés Les propriétés sont la traduction à l'espace de propriétés planes bien connues Si deux droites sont parallèles, tout plan orthogonal à l'une est alors orthogonal à l'autre Si deux droites sont orthogonales à un même plan, elles sont alors parallèles

[PDF] passage ? l'acte

[PDF] tétraèdre propriétés

[PDF] grille d'estimation de la dangerosité d'un passage ? l'acte suicidaire pondération

[PDF] intervenir auprès de la personne suicidaire ? l'aide de bonnes pratiques

[PDF] grille estimation dangerosité suicidaire

[PDF] grille d'évaluation de l'urgence suicidaire

[PDF] rapport d'intervention auprès de la personne suicidaire

[PDF] estimation de la dangerosité suicidaire

[PDF] évaluation du potentiel suicidaire

[PDF] somme des cotes d'un triangle isocele

[PDF] grille d'estimation de la dangerosité du passage ? l'acte

[PDF] hauteur relative d'un triangle definition

[PDF] linéarité multiplicative

[PDF] propriété de linéarité 5eme

[PDF] propriété de linéarité 6ème

Centre gravité du TRIANGLE

Centre géométrique, isobarycentre

Centre de masse, centre d'inertie

Centroid (anglais)

Point médian

Tous ces vocables pour un seul point dans untriangle quelconque !

Nous allons positionner le centre

de gravité, énoncer quelques relations géométriques et, calculer les coordonnéesdu centre de gravité. Nous démonterons par la méthode des vecteurs que le ces coordonnée sont la moyenne arithmétiquedes coordonnées des sommets.

Centre de gravité du triangle quelconque

Le centre de gravité (G)

du trianglequelconque se trouve à l'intersection des trois médianes (AMA , BMB , CMC).

En effet chaque médiane partage

un triangle en deux triangles de même aire.

Le centre de gravité est situé au

2/3 de la médiane en partant du

sommet.

CG = 2/3 CMC

En prenant la hauteur issue du

même sommet, celle-ci est partagée également en tiers (théorème de Thalès)

Suite en Médianes et triangles

Propriétés métriques

Relation cousine de

celle duthéorème de Pythagore;

Mais celle-ci qui

découle duthéorème d'Apollonius.

3 (m² + n² + p²) = a² + b² + c²

Théorème

d'Apollonius. a² + b² ½ c² = 2 (p + p')² b² + c² ½ a² = 2 (m + m')² c² + a² ½ b² = 2 (n + n')²

Propriété du point

de concours desmédianes. m + m' = m + ½ m = 3/2 m n + n' = 3/2 n p + p' = 3/2 p

En remplaçant:

a² + b² ½ c² = 2 (3/2 p)² = 9/2 p² b² + c² ½ a² = 2 (3/2 m)² = 9/2 m² c² + a² ½ b² = 2 (3/2 n)² = 9/2 n²

On additionnant

tout cela.

2a² ½ a² + 2 b² ½ b² + 2c² 1/2c²

= 9/2 (m² n² + p²) Un peu de calcul. 3/2 (a² + b² + c²) = 9/2 (m² n² + p²)

En simplifiant par

3/2. a² + b² + c² = 3 (m² n² + p²)

Autre relation pour

un point M quelconque: AM² + BM² + CM² = AG² + BG² + CG² + 3MG²

Coordonnées cartésiennes de G

Formule fondamentale

Les coordonnées

cartésiennes du centre de gravité du triangle quelconque sont égales à la moyenne arithmétique des coordonnées des sommets.

A (0, 0); B (18, 0); C (11, 12);

12/3 = 4 )

Exemple

Voir Démonstration vectorielle de ces relations

Centre de gravité et médianes

Démonstration

Montrer que G est aussi le

point de concours des médianes G'.

Ce que nous savons:

Les coordonnées du centre

de gravité (G):

Les médianes se

coupent en G'

Nous allons démontrer que

AM et AG sont colinéaires.

Démonstration qui peut se

répéter pour les deux autres médianes. Alors G et G' sont confondus.

AM (médiane)

et AG (centre de gravité) colinéaires?

L'équation de la

droite AM avec K son coefficient directeur.

Valeur de K.

Coefficient directeur de

AG.

Égalité des coefficients

directeurs K et H.

Les deux droites AG et AM sont colinéaires

et, étant toutes deux issues de A, elles sont confondues.

Idem pour BG et BN.

Ces droites se coupent au même point G.

G et G' représentent le même point.

Somme des vecteurs

Il s'agit de démontrer que la

somme desvecteurs issus du centre de gravité et joignant les sommets est nulle (ici, avec l'exemple du triangle).

Propriétés vraies pour tous les

polygones plans.

Coordonnées des vecteurs

GA = (xA Ȃ xG , yA Ȃ yG)

GB = (xB Ȃ xG , yB Ȃ yG)

GC = (xC Ȃ xG , yC Ȃ yG)

Somme (S) de ces trois

vecteurs xS = xA Ȃ xG + xB Ȃ xG + xC Ȃ xG = xA + xB + xC Ȃ 3xG yS = yA Ȃ yG + yB Ȃ yG + yC Ȃ yG = yA + yB + yC Ȃ 3yG

Or, on connait les

coordonnées du centre de gravité.

En remplaçant dans la

somme des vecteurs: xS = 0 yS = 0

La somme des vecteurs issus

de G est égale au: vecteur nul.

Illustration géométrique pour le polygone

Propriété

Le centre de gravité d'un

polygone (plan) est tel que la somme des vecteurs issus de ce point vers chacun des sommets est nulle.

Exemple

Le point G est le centre de

gravité du polygone ABCDE.

La somme des vecteurs

(bleus) issus de G est nulle.

Vérifions-le par construction

géométrique de la somme (vert):

Centre de gravité ± Relation vectorielle

Démonstration

Démontrer la relation

vectorielle associée au centre de gravité.

On sait que le centre

du triangle est aussi le point de concours des médianes, situé au 2/3 des sommets.

La démonstration fait

intervenir la méthode des vecteurs. Nous allons caractériser les points du triangle par des vecteurs, tous issus de la même origine quelconque. (On aurait pu choisir G comme point origine.

Choix d'une origine

quelconque pour le plaisir d'un calcul vectoriel général).

Exemple de relation

Pour alléger l'écriture, nous allons omettre la flèche pour les vecteurs.

Avec les trios (u, v, w)

et (a, b et c). a = v u b = w v c = u w

Avec le trio (x, y et z)

caractérisant lesmilieux des côtés. x = u + ½ a = u + ½ (v u) = ½ (u + v) y = ½ (u + w) z = ½ (v + w)

Les vecteurs sur

les médianes. ma = x w = ½ (u + v) w mb = z u = ½ (v + w) u mc = y v = ½ (u + w) v

En prenant le vecteur

g, on caractérise

également des

portions de médianes. m'a = g w m'b = g u m'c = g v

Or les portions de

médianes (ma) et etles médianes (ma') sont colinéaires

Les vecteurs sont

proportionnels dans le rapport 2/3. ma = ½ (u + v) w = 2/3 (g w) mb = ½ (v + w) u = 2/3 (g u) mc = ½ (u + w) v = 2/3 (g v)

En additionnant tout

cela, les termes à gauche s'annulent.

0 = 2/3 (g w) + 2/3 (g u) + 2/3 (g v)

Simplification.

0 = 3g u v w

g = 1/3 (u + v + w)

Formule fondamentale

En reprenant la notation vectorielle.

En projetant les vecteurs sur les axes,

les coordonnées cartésiennes du centre de gravité du triangle quelconque sont égales à la moyenne arithmétique des coordonnées des sommets.

Cas du tétraèdre

Tétraèdre régulier ou non

Exemple:

A (2, 4, 0)

B (6, 8, 0)

C (8, -2, 0)

D (4, 2, 10)

G (5, 3, 2,5)

Tétraèdre régulier

Distance du centre de gravité à

la base:

Le centre géométrique ou centre de

gravité se situe à l'intersection des droites joignant un sommet au centre géométrique de la face opposée. Ces droites sont les médianes du tétraèdre.

Pour tout tétraèdre, les médianes sont

partagées en 1/4, 3/4 par le centre géométrique.

Pour le tétraèdre régulier, AG s'appuie

sur la hauteur du tétraèdre et découpe cette hauteur au 3/4. Source : http://villemin.gerard.free.fr/aScience/Physique/STATIQUE/Triangle.htmquotesdbs_dbs44.pdfusesText_44