[PDF] EXERCICES AVEC SOLUTIONS (STATIQUE)



Previous PDF Next PDF







Exercices : ACTIONS MÉCANIQUES ET FORCES

Exercices : ACTIONS MÉCANIQUES ET FORCES Exercice 1 Une fore dont l’intensité est égale à 125 N est représentée par un veteur qui mesure 5 m Quelles seraient les mesures des longueurs des vecteurs qui représenteraient des forces de 25 N, 300 N, 480 N ? Exercice 2 On a représenté des forces par des vecteurs



Exercices : ACTIONS MÉCANIQUES ET FORCES

a) Les actions de contact peuvent être ponctuelles ou réparties b) L’action du vent sur la voile du véliplanchiste est une action à distance c) L’unité légale de la force est le kilogramme, de symbole kg d) La valeur d’une force se mesure avec un dynamomètre Exercice 4 Observer la photo a) Quel est le nom de l’appareil de mesure



1 2 3 4 - AlloSchool

’ et ) * Dans trajectoire 1 en m/s et en Km/h 4 Calculer la vitesse moyenne entre les positions ) * et ) + Dans trajectoire 2 en m/s et en Km/h 5 Calculer la vitesse moyenne entre les positions ) ’ et ) + Dans trajectoire 3 en m/s et Km/h Un chauffeur a conduit sa voiture de la ville de Erachidia à 8 h du matin, et le chauffeur faire une



Exercices sur les forces, 1re partie corrig

Exercices sur les forces, 1ère partie (Corrigé) 6 Nous pouvons déduire un angle dans le triangle, on détermine un angle de 40° à l’extrémité du vecteur de 0,98 N par rapport à l’horizontale (angle alterne-interne) et on lui soustrait 20°, ce qui nous donne un angle de 20° entre l’extrémité du vecteur dont la norme est de 0,98



Forces - Cité Scolaire Maurice Ravel, Paris

Forces Corrige (suite) Exercice III 1 Expression du poids de l’o jet : P = mg e 2 Calcul du poids : P = 1,0 x 9,78 = 9,78 N 3 Expression de la fore d’attration gravitationnelle exerée par la Terre sur et o jet à l’altitude :



MÉCANIQUE GÉNÉRALE – Cours et exercices corrigés

travaillera dans une collection d’espaces (un espace par solide) en translation et en rotation les uns par rapport aux autres Les mouvements se représentent alors par des objets appelés torseurs cinématiques, qui seront construits dans le premier chapitre On leur associe des actions mécaniques appelées torseurs des actions mécaniques



Fiche dexercices sur Les forces - WordPresscom

Les forces d’attraction des aimants A et B L’aimant A exerce une force de 5 N sur la bille a) Ces actions sont-elles des actions de contact ou à



A/ Equilibre d’un solide soumis à 2 forces

fil et si les frottements de la poulie sont négligeables) 3-Solide sur un plan incliné Considérons une surface plane et posons sur celle-ci un solide S Le solide est soumis à deux forces : son poids P, force verticale et la réaction R du plan sur l’objet Lorsque le plan est horizontal, les deux forces se compensent et l’on a: P R 0



EXERCICES AVEC SOLUTIONS (STATIQUE)

au point A et d’une articulation cylindrique au point B Un câble CD inextensible et de masse négligeable maintient la plaque en position horizontale Une charge Q = 2P est suspendue au point E de la plaque Les données sont : ; 3 a b = α=30° Déterminer les réactions des articulations en A et B ainsi que la tension dans le câble en

[PDF] actions positives de l'homme sur l'environnement PDF Cours,Exercices ,Examens

[PDF] active directory microsoft PDF Cours,Exercices ,Examens

[PDF] active directory ou PDF Cours,Exercices ,Examens

[PDF] active directory pour les nuls PDF Cours,Exercices ,Examens

[PDF] active directory tuto PDF Cours,Exercices ,Examens

[PDF] activer suggestion amis facebook PDF Cours,Exercices ,Examens

[PDF] Activité 4ème Autre

[PDF] Activité "Cordonnées d'un point" 2nde Mathématiques

[PDF] Activité 1 et 2 2nde Physique

[PDF] activité 1 les notices des médicaments correction PDF Cours,Exercices ,Examens

[PDF] Activité 1 niveau 6eme 6ème Mathématiques

[PDF] Activité 1: Multiplication de Fractions 5ème Mathématiques

[PDF] Activité 1:Les objets dans l'univers 4ème Physique

[PDF] Activité 2 : diversité génétique au sein d'une population 2nde SVT

[PDF] Activité 2 Carré d'une différence 4ème Mathématiques

CA 354
CB 5,288 CA 3390
CB 3234
$9(&67$7,48( Déterminer les tensions des câbles dans les figures suivantes : 400N

40° 20°B

C A A

10°

70°

B C 60Kg

20°

40°

o CB T o CA T o P

40°

20°

B C A x y

Au point C nous avons :

oooo 0PTT CB CA

La projection sur les axes donne :

020cos40cos qq

CBCA TT

020sin40sin qqPTT

CBCA d'où : T . T N N

Au point C nous avons :

o CB T A

10°

70°

B C P o CA T x y oooo 0PTT CB CA

La projection sur les axes donne :

010cos70sin qq

CBCA TT

010sin70cos qqPTT

CBCA d'où : T ; T N N

Exercice 02 :

Une barre homogène pesant 80 N est liée par une articulation cylindrique en son extrémité A

à un mur. Elle est rete

nue sous un angle de

60°

avec la verticale par un câble inextensible de masse négligeable à l'autre extrémité B

Le câble fait un angle de

30°

avec la barre.

Déterminer la tension dans le

câble et la réaction au point A o o D B A

30°

60°

C x y o B A

30°

60°

C

Solution :

Le système est en équilibre statique dans le plan , nous avons alors : oo

0 (1) oe

oooo 0 oo 0 (2) oe ooooo

šš0

¯®qq

o

30sin30cos

¯®qq

o

30sin)2/(30cos)2/(

o 0

¯®qq

o

60sin60cos

L'équation (1) projetée sur les axes donne : 060cos q (3)

060sin q

(4)

L'équation (2) s'écrira :

030cos230sin60cos60sin30cos qqqqq (5)

(5) Ÿ 64,3430cos2 q (3) Ÿ

32,1760cos q

(4) Ÿ

3060sin q

d'où 64.34
22
et l'angle que fait la réaction avec l'axe ox est donné par :

5,0cos

T Ÿq 60T

Exercice 03 :

On maintient une poutre en équilibre statique à l'aide d'une charge P suspendue à un câble

inextensible de masse négligeable, passant pa r une poulie comme indiqué sur la figure. La poutre a une longueur de 8m et une masse de 50 Kg
et fait un angle de

45°

avec l'horizontale et

30°

avec le câble. Déterminer la tension dans le câble ainsi que la grandeur de la réaction en A ainsi que sa direction par rapport à l'horizontale. y x o o o G 50Kg
A B

30°

45°

50Kg
A B

30°

45°

Solution :

Toutes les forces agissant sur la poutre sont dans le plan . Le système est en équilibre statique d'où oo

0 (1) oe

oooo 0 oo 0 (2) oe ooooo

šš0

Nous avons T = P , et

o

2424AB

o

2222AG

; ; T ; o PP0

¯®qq

o

15sin15cosTT

o AyAx A RRR L'équation projetée sur les axes donne : 015cos qTR Ax

015sin qPTR

Ay

L'équation s'écrira :

02215cos2415sin24 qqPTT

)15sin15(cos2422qq PT

Ÿ TN55,353

et Ÿ ŸNR Ax

50,341 NR

Ay

50,591

d'où NRRR AYAxA 683
22
et l'angle que fait la réaction avec l'axe est donné par :

577,0cos

AAx RR

T Ÿq 76,54T

Exercice 04 :

La barre est liée en par une articulation cylindrique et à son extrémité , elle repose

sur un appui rouleau. Une force de agit en son milieu sous un angle de dans le plan vertical. La barre a un poids de Déterminer les réactions aux extrémités et . G

45°

o F A B o A R o B R x x o P A B

Solution :

Toutes les forces agissant sur la poutre sont situées dans le plan (xoy) . Le système est en

équilibre statique,

nous avons alors : oo ii

F0 oe

ooooo 0PFRR

B A

oo i Ai M0 oe ooooooo

ššš0PAGFAGRAB

B La projection de l'équation sur les axes donne :

045cos qFR

Ax

045sin qPFRR

BAy En développant l'équation on aboutit à :

©§PLFFLRL

B

0245cos2 qPLFLLR

B oe0242 PFR B

ŸN R

B 71,95

ŸN R

Ax

42,141

; d'où ŸN R Ay

71,95 NRRR

AyAxA

76,170

22

Exercice 05 :

Une échelle de longueur pesant est appuyée contre un mur parfaitement lisse en un point situé à du sol. Son centre de gravité est situé à de sa longueur à partir du bas. Un homme pesant grimpe jusqu'au milieu de l'éc helle et s'arrête. On suppose que le sol est rugueux et que le syst

ème reste en équilibre statique.

Déterminer les réactions aux points de contact de l'échelle avec le mur et le sol. o B R o P o Q o A R

Solution :

AB=L =20 m , OB=16 m, Q =700 N , P =400 N, 8,02016sin ABOB 13,53

L'échelle est en équilibre statique. La résultante des forces est nulle. Le moment résultant par

rapport au point A est aussi nul. ii F0 (1) 0PQRR BA iAi M0 (2)

0PACQAGRAB

B

Nous avons aussi :

sincosLLAB ; ; ; ; Q ; sin)2/(cos)2/(LLAG sin)3/(cos)3/(LLAG 0 B B RR Q 0 PP 0 La projection de l'équation (1) sur les axes donne les équations scalaires : 0 BAx

RR (3)

0PQR Ay (4) En développant l'équation (2), on aboutit à :

000sin)3/(cos)3/(0sin)2/(cos)2/(0sincos

PLLQLLRLL

B

0cos3cos2sin

LPLQLR

B (5) (5)

32sincosPQR

B d'où NR B 5,362 (3) NRR BAx 5,362 (4) ; on déduit : NR Ay

1100NR

A

34,1158

Exercice 06 :

On applique trois forces sur une poutre de masse négligeable et encastrée au point A.

Déterminer la réaction à l'encastrement.

A

400N800N200N

1,5m2,5m2m

Exercice 07 :

Un plaque carrée de coté a, de poids P est fixée à un mur à l'aide d'une articulation sphérique

au point A et d'une articulation cylindrique au point B

Un câble CD inextensible et de masse

négligeable maintient la plaque en position horizontale. Une charge

Q = 2P

est suspendue au point E de la plaque. Les données sont : ; 3 q 30D Déterminer les réactions des articulations en A et B ainsi que la tension dans le câble en fonction de a et P E B

30°

A C o b G o D o B

30°

A C E Q b D

Solution :

La plaque est en équilibre statique dans le plan horizontale, nous pouvons écrire : oo

0 (1) Ÿ

oooooo 0 oo 0 (2) Ÿ ooooooooo

šššš0

Articulation sphérique en A :

Articulation cylindrique en B et d'axe y:

,0, Le triangle ACD est rectangle en A , et l'angle (DA,DC) = 30° alors l'angle (CA,CD)=60°

La tension aura pour composantes :

o

2/)3(4/)2(4/)2(60sin45sin60cos45cos60cos

o PQ200 o PP00 o

03/20aAB

o 0aaAC o

03/2aaAB

o

02/2/aaAB

Projetons l'équation sur les axes du repère :

04/)2( TRR

BxAx

04/)2( TR

Ay

022/)3( PPTRR

BzAz

L'équation se traduira par :

PaaPaaTTTaaRRa

BzBx Le développement de ce produit vectoriel donnera trois équations :

02342332 aPaPaTRa

Bz

02223 aPaPaT

032
Bx Ra La résolution de ce système d'équations donne : ; Ÿ Ÿ0 Bx

RPT335 ; ŸPR

Bz

ŸPR

Az 23
; Ÿ PR Ay 1265
; ŸPR Ax 1265
PR A

39,17 et PR

B

Exercice 08 :

Une enseigne lumineuse rectangulaire de densité uniforme de dimension x pèse

Elle est liée au mûr par une articulation s

quotesdbs_dbs5.pdfusesText_10