[PDF] Cours de Génie Electrique - Gilles Chagnon



Previous PDF Next PDF







COURS ELECTRICITE Semestre 1

V Chollet - cours-elec-08 - 01/10/2007 - Page 1 / 49 COURS ELECTRICITE



Chapitre 1 LES BASES DE LELECTROCINETIQUE

(la première des deux lettres A et B) A B uAB I 2 b Loi des tensions (loi des mailles) La somme des tensions effectuée en parcourant une maille est nulle A u B AB C uCA uBC En effet v −vA =0 0 0 AB BC CA A B B C C A ⇒ + + = ⇒ − + − + − = u u u v v v v v v I 3 Dipôle I 3 a Définition



TRAVAUX PRATIQUES D’ELECTRICITE ET D’ELECTRONIQUE

Page 2 1 Vous devez apporter le cours et les TD pendant les séances de travaux pratiques 2 Préparer au préalable le TP prévu pour la séance De ce fait il est impératif



Sommaire cours 1re année BTS maintenance industrielle

Sommaire des cours 1re année BTS MI Module 3 Matières Culture générale et expression Anglais Mathématiques et sciences physiques Analyse fonctionnelle et structurelle



Mécanique - Académie de Grenoble

première année seconde anné Contenu de la formation Formation générale : Dessin industriel, Electricité, pneumatique, hydraulique, mécanique, Automatisme



RAPPORT DE STAGE D’OBSERVATION 1ere année

d’Electricité (SMD) et souvent effectuée à partir des ressources locales L’Alimentation en Eau Potable (AEP) ne couvrait alors que les villes nouvelles et quelques résidences de la médina En milieu rural, l’approvisionnement en eau n’était assuré que par des moyens traditionnels



Cours de Génie Electrique - Gilles Chagnon

Licence Professionnelle de Génie Industriel Université Paris VI-Jussieu; CFA Mecavenir Année 2003-2004 Cours de Génie Electrique G CHAGNON



Développement du système de com- bustion séquen- tielle pour

La première chambre de combustion est du type annulaire et équipée de 30 brû-leurs EV low-NO x éprouvés Les brûleurs EV (EV provient du terme «Environmental») [16] procurent l’avantage d’une combus-4 3 2 tion à faible formation de NO x, sans injec-tion d’eau ou de vapeur Testée pour la première fois en 1990 auprès de la Mid-



HORS-SÉRIE GÉNIE CIVIL - Education

Le B O 1 2 1 N°7 30 JUIL 1998 G ÉNIE CIVIL HORS-SÉRIE reau d’études, organisation, chantier ) L’option Génie climatique et équipements du bâtiment vise à répondre à la demande des entreprises, des services et bureaux d’études

[PDF] cours de electricite s2 pdf /

[PDF] cours d'electricité gratuit pdf

[PDF] exercices corrigés electricité licence 1

[PDF] formule électricité terminale

[PDF] élection partielle conseil municipal

[PDF] élection d'un adjoint au maire après démission

[PDF] élection du maire par le conseil municipal

[PDF] élection adjoint au maire

[PDF] délibération élection adjoint suite démission

[PDF] circulaire 19 août 2005

[PDF] circulaire du 7 janvier 2003

[PDF] circulaire frais professionnels

[PDF] circulaire questions réponses frais professionnels

[PDF] lettre circulaire dss n° 2005-376 du 4 août 2005

[PDF] circulaire avantage en nature

Cours de Génie Electrique - Gilles Chagnon

Licence Professionnelle de Génie Industriel

Université Paris VI-Jussieu; CFA Mecavenir Année 2003-2004

Cours de Génie Electrique

G.CHAGNON

2

Table des matières

Introduction11

1 Quelques mathématiques...12

1.1 Généralités sur les signaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.2 Les classes de signaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.2.1 Temps continu et temps discret . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.2.2 Valeurs continues et valeurs discrètes . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.2.3 Période, fréquence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.3 Energie, puissance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.3.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.3.2 Remarques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 La Transformée de Fourier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1.2 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2 Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2.1 Linéarité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2.2 Décalage en temps/fréquence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2.3 Dérivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.2.4 Dilatation en temps/fréquence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.2.5 Conjugaison complexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.2.6 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.3 Représentation de Fourier des signaux d"énergie infinie . . . . . . . . . . . . . . . . . . . . . 19

1.2.3.1 Impulsion de Dirac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.3.2 Spectre des signaux périodiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.3.3 Cas particulier: peigne de Dirac . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Notion de filtre linéaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1 Linéarité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.2 Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.3 Fonction de transfert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Généralités27

2.1 Le circuit électrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Circuits électriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2 Courant, tension, puissance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2.1 Courant électrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2.2 Différence de potentiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.2.3 Energie, puissance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2.4 Conventions générateur/récepteur . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.3 Lois de Kirchhoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.3.1 Loi des noeuds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.3.2 Loi des mailles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Dipôles électriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Le résistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1.1 L"effet résistif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1.2 Loi d"Ohm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3

4TABLE DES MATIÈRES

2.2.1.3 Aspect énergétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1.4 Associations de résistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 La bobine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2.1 Les effets inductif et auto-inductif . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2.2 Caractéristique tension/courant d"une bobine . . . . . . . . . . . . . . . . . . . . . 33

2.2.2.3 Aspect énergétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.3 Le condensateur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.3.1 L"effet capacitif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.3.2 Caractéristique tension/courant d"un condensateur . . . . . . . . . . . . . . . . . . 34

2.2.3.3 Aspect énergétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Régime sinusoïdal, ouharmonique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Puissance en régime sinusoïdal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2.1 Puissance en régime périodique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2.2 Puissance instantanée en régime sinusoïdal . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2.3 Puissance moyenne en régime sinusoïdal . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Représentation complexe d"un signal harmonique . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.4 Impédances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.4.1 Rappel: caractéristiques tension/courant . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.4.2 Impédance complexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.4.3 Associations d"impédances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Spectre et fonction de transfert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 Spectre d"un signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1.2 Signaux multipériodiques et apériodiques . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Fonction de transfert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Du semi-conducteur aux transistors 42

3.1 Les semi-conducteurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Semi-conducteurs intrinsèques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1.1 Réseau cristallin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1.2 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1.3 Exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Semi-conducteurs extrinsèques de typen. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2.1 Réseau cristallin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2.2 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2.3 Modèle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.3 Semi-conducteurs extrinsèques de typep. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.3.1 Réseau cristallin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.3.2 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.3.3 Modèle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 La jonction PN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.4 Barrière de potentiel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.5 Caractéristique électrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.5.2 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.5.3 Caractéristique et définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Le transistor bipolaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1.2 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1.3 Hypothèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1.4 Transistor au repos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 Modes de fonctionnement du transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

TABLE DES MATIÈRES5

3.3.2.2 Blocage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2.3 Fonctionnement normal inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2.4 Fonctionnement normal inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2.5 Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Le transistor MOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.2 Définitions et principe de fonctionnement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Systèmes analogiques55

4.1 Représentation quadripolaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.2 Matrice de transfert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.3 Exemple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.4 Impédances d"entrée/sortie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Contreréaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1.2 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1.3 Un exemple d"intérêt du bouclage . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.2 Un peu de vocabulaire... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2.1 Les signaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2.2 Les((branches))de la boucle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2.3 Les gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Influence d"une perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.4 Exemples de systèmes à contreréaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.4.1 Exemple détaillé: une file de voitures sur l"autoroute . . . . . . . . . . . . . . . . 61

4.2.4.2 Autres exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Diagramme de Bode; Gabarit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Diagramme de Bode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1.2 Exemple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1.3 Les types de filtres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 Gabarit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Bruit dans les composants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.1 Densité spectrale de puissance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.2 Les types de bruit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2.1 Bruit thermique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2.2 Bruit de grenaille . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.2.3 Bruit en1=f. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.2.4 Bruit en créneaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.3 Bruit dans un dipôle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.3.1 Température équivalente de bruit . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.3.2 Rapport de bruit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.4 Facteur de bruit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.4.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.4.2 Température de bruit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.4.3 Facteur de bruit d"un quadripôle passif . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.4.4 Théorème de Friiss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Parasites radioélectriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.1 Les sources de parasites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.2 Classification des parasites... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.2.1 ... par leur propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.2.2 ... par leurs effets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.3 Les parades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6TABLE DES MATIÈRES

5 Systèmes numériques76

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.2 Représentation logique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.3 Familles de portes logiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Logique combinatoire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Les opérateurs de base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1.1 Les opérateurs simples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1.2 Propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1.3 Les opérateurs((intermédiaires)). . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.2 Table de Karnaugh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.2.1 Principe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

quotesdbs_dbs7.pdfusesText_5