[PDF] 236186PIG Physique C01 CS5 OX - Dunod



Previous PDF Next PDF







Chapitre 10 Aspects énergétiques des phénomènes mécaniques

REVISION – 3 EXERCICES PAGES 300 OU 322 Chapitre 10 Aspects énergétiques des phénomènes mécaniques Exercices Dresser le bilan des forces subies par l



PHYSIQUE Exercices de révision sur le chapitre : gravitation

Exercices 8 : Déterminer des forces sur la Lune La Lune est assimilable à un solide dont la masse est régulièrement répartie autour de son centre 1 Écrire l’expression de la force de gravitation exercée par la Lune de masse m L sur un objet de masse m, situé à la distance d du centre de la Lune 2



Correction exercices de révisions

Sous thème : L’étude du mouvement Exercices de révisions 3 La flèche doit donc faire 1,8 cm Exercice 5 1°/ On étudie le mouvement du système dans le référentiel terrestre 2°/ Le système est immobile dans le référentiel terrestre, donc d’après le principe d’inertie les forces se compensent



236186PIG Physique C01 CS5 OX - Dunod

Fiche 37 Le mouvement dû à des forces centrales 86 Fiche 38 Les lois de Kepler 88 Focus Objectif Mars 90 QCM 91 Exercices 93 Chapitre 4 La physique « moderne » 95 Fiche 39 La relativité restreinte 96 Fiche 40 La dynamique relativiste 98 Fiche 41 Le photon 100 Fiche 42 Les ondes et les particules 102 Fiche 43 Les atomes 104



PROGRAMME DE PHYSIQUE NIVEAU 9EME ANNEE

3-2 LES FORCES (DUREE : 6H) Objectif général : savoir modéliser une force par un vecteur Contenus : o Exemples de forces : forces de contact, poids, forces électriques, forces magnétique o Caractéristiques des forces et modélisation par un vecteur o Condition d’équilibre pour un corps soumis à deux forces concourantes



PLAN DE TRAVAIL

PLAN DE TRAVAIL OBJECTIFS Exploiter le principe d’inertie ou sa contraposée pour en déduire des informations soit sur la nature du mouvement d’un système modélisé par un point matériel, soit sur les forces



Exercices Du Chapitre Physique 5 Noyaux Masse Et Nergie

Acces PDF Exercices Du Chapitre Physique 5 Noyaux Masse Et NergieNook, but you can also read ebooks from your computer, tablet, or smartphone Exercices Du Chapitre Physique 5 Exercices de physique chimie de collège - classe de 5eme Cette page propose des liens vers des sites qui proposent des exercices de physique chimie pour

[PDF] Les formes géométriques ? l 'école maternelle

[PDF] 4ème EXERCICES FRACTIONS (OPERATIONS) - kaddouri

[PDF] 4ème EXERCICES FRACTIONS (OPERATIONS) - kaddouri

[PDF] Fiches Autocorrectives CM2 - Ecole Sainte Marthe - Saint Jean

[PDF] ÉVALUATION NATIONALE DES ACQUIS DES ÉLÈVES EN CE1

[PDF] Le futur proche exercices et corrigé

[PDF] Le futur simple exercices et corrigé

[PDF] Le futur simple exercices et corrigé

[PDF] Seconde Généralités sur les fonctions Exercices Notion de fonction

[PDF] NOM : GEOMETRIE DANS L 'ESPACE 1ère S

[PDF] ciel gestion commerciale - Fontaine Picard

[PDF] Page 1 CM1/CM2 Grammaire Orthographe Conjugaison Édouard

[PDF] Fiches Grammaire CM1pdf

[PDF] ÉVALUATION de GRANDE SECTION DÉCOUVRIR LE MONDE

[PDF] grandeurs et mesures - Lafinancepourtous

236186PIG Physique C01 CS5 OX - Dunod

TP16-0423-Book1 19/04/2017 11:32 Page i

Physique

exercices incontournables

TP16-0423-Book1 19/04/2017 11:32 Page ii

TP16-0423-Book1 19/04/2017 11:32 Page iii

MPMP*PTPT*

JEAN-NOËLBEURY

Physique

exercices incontournables 3 e

ÉDITION

TP16-0423-Book1 19/04/2017 11:32 Page iv

Avec la collaboration scientique deSÉBASTIENFAYOLLE Conception et création de couverture : Atelier3+

© Dunod, 2012, 2014, 2017

11 rue Paul Bert, 92240 Malakoff

www.dunod.com

ISBN 978-2-10-076265-1

TP16-0423-Book1 19/04/2017 11:32 Page v

Table des matières

Partie 1

M´ecanique

1. Référentiels non galiléens 3

2. Mécanique du solide 17

Partie 2

´Electronique

3. ALI-Oscillateurs 29

4. Signaux périodiques 44

5. Électronique numérique 49

Partie 3

Optique ondulatoire

6. Interférences 59

Partie 4

Électromagnétisme

7. Électrostatique 93

8. Magnétostatique 120

9. Équationsde Maxwell- Énergieduchampélectromagnétique 131

10. Propagation 143

Partie 5

Thermodynamique

11. Systèmes ouverts en régime stationnaire 191

12. Transferts thermiques 207

© Dunod. Toute reproduction non autorisée est un délit.

TP16-0423-Book1 19/04/2017 11:32 Page vi

Table des matières

13. Statique des fluides 235

14. Fluide en écoulement 241

15. Thermodynamique industrielle 252

Partie 6

Physique quantique

16. Approche ondulatoire de la mécanique quantique 285

Partie 7

Thermodynamique statistique

17. Facteur de Boltzmann 319

Index 327

Les énoncés dans lesquels apparaît un astérisque annoncent des exercices plus difficiles.

TP16-0423-Book1 21/04/2017 12:6 Page 1

Partie 1

M´ecanique

TP16-0423-Book1 21/04/2017 12:6 Page 2

1. Référentiels non galiléens 3

1.1 : Bille dans un tube (MP) 3

1.2 : Sismographe (MP) 6

1.3 : Circonférence en rotation et anneau (MP) 9

1.4 : Dynamique en référentiel tournant (MP) 12

2. Mécanique du solide 17

2.1 : Déplacement d"un solide sur un plan horizontal (MP) 17

2.2 : Détermination d"un coefficient de frottement (MP) 23

TP16-0423-Book1 21/04/2017 12:6 Page 3

1

Référentielsnon galiléens

Exercice 1.1 : Bille dans un tube (MP)

On considère un solideMde massemsusceptible de glisser sans frottement à l"intérieur d"un tube parallélépipédique d"extrémitéO. Les grandeursr 0 =OM 0 etv 0 caractérisent la position et la vitesse deMà l"instant initialt=0dansle repère lié au tube. Le tube de longueur 2?est dans le plan horizontal et tourne autour de l"axeOzvertical à la vitesse angulaireωconstante.

1.Déterminer l"équation différentielle enrdu mouvement deM.

2.Calculer le tempsτque mettraMpour sortir du tube avec?=0,1 m;r

0

0,01 m;v

0 =0 m.s -1 etω=2rad.s -1

3.Un ressort enfilé dans le tube est fixé à son extrémité enOet à son autre

extrémité au solideM. La longueur à vide du ressort est 2r 0 . Discuter la nature du mouvement deMsuivant la valeur deω.

Analyse du problème

Cet exercice traite du mouvement relatif d"un point matériel. Il faut bien définir

le référentiel absolu (considéré comme galiléen) et le référentiel relatif (considéré

comme non galiléen). Le bilan des forces se fait en travaillant d"abord dans le ré- férentiel galiléen. Il faut rajouter ensuite les forces d"inertie d"entraînement et de Coriolis pour appliquer le principe fondamental de la dynamique dans le référentiel non galiléen. 1. ?u r ?u ?u z q Oxy M q © Dunod. Toute reproduction non autorisée est un délit. 3

TP16-0423-Book1 21/04/2017 12:6 Page 4

Partie 1

Mécanique

Système :Bille de massem.

Référentiels :?

0

O;?i,?j,?k,t?galiléen et?=?

O;?u r ,?u ,?k,t? non galiléen.

Le vecteur rotation instantané de

?par rapport à? 0 vaut :?ω 0 =ω?k.

Le mouvement relatif dans?s"écrit :

-→OM=r?u r ;?v(M) =r?u r et ?a(M) =¨r?u r

Le vecteur unitaire?u

r est fixe dans?. La dérivée par rapport au temps der?u r dans ?donne bienr?u r

Bilan des forces :

Le mouvement se fait sans frottement, la réaction du support est donc or- thogonale au petit déplacement de la bille par rapport au tube. La réaction du support a donc une composante nulle sur ?u r .La réaction du support est donc ?R=R 1 ?u +R 2 ?k

Le poids de la massemest :

?P=m?g

La force d"inertie d"entraînement est :

?f ie (M)=mω 2 -→OM

La force d"inertie de Coriolis :

?f ic (M)=-2m?ω 0 ??v(M) =-2mωr?u Principe fondamental de la dynamique (PFD) dans le référentiel non galiléen : m?a(M) =?R+?P+?f ie +?f ic

La projection dans la base

?u r ,?u ,?k?donne : ??????m¨r=mω 2 r 0=R 1 -2mωr 0=R 2 -mg L"équation différentielle du mouvement s"obtient à partir de la première projection du PFD :

¨r-ω

2 r=0 4

TP16-0423-Book1 21/04/2017 12:6 Page 5

Chapitre 1

Référentiels non galiléens

2.L"équation caractéristique s"écrit :x

2 2 =0.On en déduit alors x=±ω La solution de l"équation différentielle s"écrit donc : r=Aexp(ωt)+Bexp(-ωt) La dérivée derpar rapport au temps est :r=Aωexp(ωt)-Bωexp(-ωt).

Àt=0,r(0)=r

0 etr(0)=v 0 On a deux équations pour déterminer les constantes d"intégrationAetB: ????A+B=r 0 (éq. 1)

Aω-Bω=v

0 (éq. 2) On fait les combinaisons linéaires suivantes :(1)ω+(2)et(1)ω-(2).

On a alors :

????2Aω=r 0

ω+v

0

2Bω=r

0

ω-v

0 .D"où : ???????A=r 0

ω+v

0 2ω B=r 0

ω-v

0 2ω

La bille quitte le tube pourr=?.Soit :

1 2? r 0 +v 0 exp (ωt)+12? r 0 -v 0 exp (-ωt)=? On pose :X=exp(ωt).En multipliant parexp(ωt),on est ramené à une

équation du second degré :

1 2? r 0 +v 0 X 2 +1 2? r 0 -v 0 =?X La résolution numérique donne :X=19,95ett=1,5s.

3.L"équation différentielle s"écrit :

m¨r=mω 2 r-k(r-2r 0

Elle se met sous la forme :

¨r-?

2 -k m? r=2kr 0 m k m, le système diverge. k m, on a l"équation d"un oscillateur harmonique. Ces deux résultats sont prévisibles physiquement. Si la constante de raideur est très petite, alors la force d"inertie d"entraînement l"emporte devant la force exercée par le ressort. Comme ?f ie est centrifuge, on prévoit bien un système qui diverge. © Dunod. Toute reproduction non autorisée est un délit. 5

TP16-0423-Book1 21/04/2017 12:6 Page 6

Partie 1

Mécanique

Exercice 1.2 : Sismographe (MP)

La partie sensible du sismographe est une masse munie d"un index et d"une tige. Cet ensemble de massemassujetti à se déplacer verticalement est suspendu à un ressort. Le ressort est fixé enAsur un bâti. La partie sensible (masse + index + tige) est par ailleurs reliée à un amortisseur qui exerce une force de frottement fluide-λ?Voù?Vest le vecteur vitesse de la masse dans le référentiel lié au bâti. Le référentiel terrestre d"origineGest galiléen. Un tremblement de terre est modélisé par une vibration verticale harmonique de translation :S(t)=S 0 cos(ωt)oùS(t) repère le déplacement vertical du sol par rapport au référentiel galiléen du lieu. On définitH(t)=h(t)-h eq la grandeur qui repère le déplacement de la massempar rapport au repos dans le référentiel lié au bâti. S(t) h(t) G O y X xA partie sensible de masse m

1.Établir l"équation différentielle enH(t) du mouvement de la masse. Quel est

le sens physique de la pulsation propreω 0 et du facteur de qualitéQ?

2.On représente graphiquement????H

S ????en fonction deω(rad.s -1 6

TP16-0423-Book1 21/04/2017 12:6 Page 7

Chapitre 1

quotesdbs_dbs29.pdfusesText_35