[PDF] TRANSFERTS THERMIQUES



Previous PDF Next PDF







Transferts thermiques Conduction - Convection Rayonnement

(Conduction, convection, rayonnement) I) Conduction (diffusion) thermique : 1 – Les différents modes de transfert thermique : • Conduction (diffusion thermique) : Exemples : * Cuillère métallique dont une extrémité est plongée dans de l’eau bouillante * Déperdition de chaleur à travers une fenêtre en plein hiver



TRANSFERTS THERMIQUES I- Généralités II- Conduction III

II C -conduction en 1D (problème du mur) I- Conduction TRANSFERTS THERMIQUES x = 0 x = L T(x = 0) = T 0 T(x = L) = T L Dans le cas général, T dépendra de l'espace: ce sera T(x, t) et la Loi de Fourier se réduit à l'équation différentielle 1 D ⇒une seule variable d’espace x Flux de chaleur φ φ φ en W/m 2 x = 0 x = L T0 > TL TL



Transfert de chaleur - Exercices

Transfert de chaleur - Exercices université de technologie de compiègne Transfert de chaleur Énoncés des travaux dirigés Table des matières Rappels de thermodynamique Conduction - Murs plans - Conduites cylindriques Barres encastrées Source de chaleur Régime transitoire Convection - Échangeurs de chaleur Rayonnement



Transferts thermiques Cours et exercices corriges

5 7 3 Principaux résultats pratiques de convection naturelle externe 173 5 7 4 Exercice d’application 175 Exercice 5 4 Chauffage d’une pièce 175 5 8 Convection naturelle interne 176 5 8 1 Exercice d’application 176 Exercice 5 5 Lame d’air d’un double vitrage 176 5 9 Convection mixte : compétition entre convection forcée et



MODULE 2A101 - Université Paris-Saclay

- On parlera de convection mixte lorsque les deux types de convection coexistent dans un système Transfert de chaleur par rayonnement Tout corps matériel émet et absorbe de l’énergie sous forme de rayonnement électromagnétique Le transfert de chaleur par rayonnement entre deux corps séparés par du vide ou un milieu semi-



TRANSFERTS THERMIQUES

- 55 exercices et problèmes tous présentés avec des corrigés détaillés Vous trouverez plus de détail sur cet ouvrage sur le site d’Edilivre, qui propose une version pdf à 1,99 € et une version papier à 52,50 €, à l’adresse suiva nte :



Convection thermique - Technologue Pro

modes : conduction, convection et rayonnement S’il y a changement de phase, le transfert se fait à température constante suivant un processus réversible Dans ce cas, la chaleur de changement de phase est prise en considération (chaleur latente de vaporisation, chaleur latente de condensation, etc )



Numéro : Corrigé

Le coefficient de convection hc entre le fluide et la bille est de 10 W/m2 K è ∶ = ; = I ère1 Partie : Pour savoir si la température est uniforme dans la bille, il faut calculer le rapport appelé nombre de Biot ( Bi ) entre la résistance de conduction de la bille et la résistance de convection entre la bille et le fluide

[PDF] convection mantellique origine et consequence PDF Cours,Exercices ,Examens

[PDF] convention 87 oit PDF Cours,Exercices ,Examens

[PDF] convention cadre de l'oms pour la lutte anti tabac PDF Cours,Exercices ,Examens

[PDF] convention d'ecriture de genotype et du phenotype PDF Cours,Exercices ,Examens

[PDF] convention d'écriture gène protéine PDF Cours,Exercices ,Examens

[PDF] convention d'objectifs association commune PDF Cours,Exercices ,Examens

[PDF] convention d'objectifs et de moyens PDF Cours,Exercices ,Examens

[PDF] convention de partenariat association collectivité PDF Cours,Exercices ,Examens

[PDF] convention de stage 3ème pdf PDF Cours,Exercices ,Examens

[PDF] convention de stage anglais traduction PDF Cours,Exercices ,Examens

[PDF] convention de stage cned PDF Cours,Exercices ,Examens

[PDF] convention de stage entre parents et entreprise PDF Cours,Exercices ,Examens

[PDF] convention de stage étudiant PDF Cours,Exercices ,Examens

[PDF] convention de stage gratuite PDF Cours,Exercices ,Examens

[PDF] convention de stage pdf PDF Cours,Exercices ,Examens

Ecole des Mines Nancy 2

ème année

TRANSFERTS

THERMIQUES

Yves JANNOT

2012

T¥ jr jr+dr

jc r + dr r r0 re T0 dx y d 0 x y Tp Tg log10(l) -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 g X

Visible

IR

Micro-onde Onde radio Téléphone

Thermique

UVlog 10(l) -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 g X

Visible

IR

Micro-onde Onde radio Téléphone

Thermique

UV

Table des matières

Yves Jannot 1

Ce document est le fruit d"un long travail, il est strictement interdit : - de le publier sur un site web sans autorisation de l"auteur, - de le plagier (c"est déjà arrivé !). Une version plus complète de ce document est disponible sous forme de livre contenant : - des compléments de cours, - davantage d"annexes pratiques, - 55 exercices et problèmes tous présentés avec des corrigés détaillés. Vous trouverez plus de détail sur cet ouvrage sur le site d"Edilivre, qui propose une version pdf à

1,99 € et une version papier à 52,50 €, à l"adresse suivante :

Transferts et échangeurs de chaleur

Cours Transferts thermiques 2

ème année Ecole des Mines Nancy 2

Table des matières

Yves Jannot 3

NOMENCLATURE .............................................................................................................................................. 6

1. GENERALITES SUR LES TRANSFERTS DE CHALEUR ........................................................................ 7

1.1 INTRODUCTION ............................................................................................................................................ 7

1.2 DEFINITIONS ................................................................................................................................................ 7

1.2.1 Champ de température .................................................................................................................... 7

1.2.2 Gradient de température ................................................................................................................. 7

1.2.3 Flux de chaleur ............................................................................................................................... 7

1.3 FORMULATION D"UN PROBLEME DE TRANSFERT DE CHALEUR ..................................................................... 8

1.3.1 Bilan d"énergie ................................................................................................................................ 8

1.3.2 Expression des flux d"énergie.......................................................................................................... 8

2 TRANSFERT DE CHALEUR PAR CONDUCTION EN REGIME PERMANENT ........................... 11

2.1 L"EQUATION DE LA CHALEUR .................................................................................................................... 11

2.2 TRANSFERT UNIDIRECTIONNEL .................................................................................................................. 12

2.2.1 Mur simple .................................................................................................................................... 12

2.2.2 Mur multicouches .......................................................................................................................... 13

2.2.3 Mur composite ............................................................................................................................... 14

2.2.4 Cylindre creux long (tube) ............................................................................................................ 15

2.2.5 Cylindre creux multicouches ......................................................................................................... 16

2.2.6 Prise en compte des transferts radiatifs ........................................................................................ 17

2.3 TRANSFERT MULTIDIRECTIONNEL .............................................................................................................. 18

2.3.1 Méthode du coefficient de forme ................................................................................................... 18

2.3.2 Méthodes numériques .................................................................................................................... 19

2.4 LES AILETTES ............................................................................................................................................. 22

2.4.1 L"équation de la barre................................................................................................................... 22

2.4.2 Flux extrait par une ailette ............................................................................................................ 23

2.4.3 Efficacité d"une ailette .................................................................................................................. 26

2.4.4 Choix des ailettes .......................................................................................................................... 27

3 TRANSFERT DE CHALEUR PAR CONDUCTION EN REGIME VARIABLE ............................... 29

3.1 CONDUCTION UNIDIRECTIONNELLE EN REGIME VARIABLE SANS CHANGEMENT D"ETAT ............................ 29

3.1.1 Milieu à température uniforme...................................................................................................... 29

3.1.2 Milieu semi-infini .......................................................................................................................... 30

3.1.3 Transfert unidirectionnel dans des milieux limités : plaque, cylindre, sphère .............................. 37

3.1.4 Systèmes complexes : méthode des quadripôles ............................................................................ 53

3.2 CONDUCTION UNIDIRECTIONNELLE EN REGIME VARIABLE AVEC CHANGEMENT D"ETAT ............................ 59

3.3 CONDUCTION MULTIDIRECTIONNELLE EN REGIME VARIABLE .................................................................... 60

3.3.1 Théorème de Von Neuman ............................................................................................................ 60

3.3.2 Transformations intégrales et séparation de variables ................................................................. 61

4 TRANSFERT DE CHALEUR PAR RAYONNEMENT ......................................................................... 65

4.1 GENERALITES. DEFINITIONS ...................................................................................................................... 65

4.1.1 Nature du rayonnement ................................................................................................................. 65

4.1.2 Définitions ..................................................................................................................................... 66

4.2 LOIS DU RAYONNEMENT ............................................................................................................................ 69

4.2.1 Loi de Lambert .............................................................................................................................. 69

4.2.2 Lois physiques ............................................................................................................................... 69

4.3 RAYONNEMENT RECIPROQUE DE PLUSIEURS SURFACES ............................................................................. 72

4.3.1 Radiosité et flux net perdu ............................................................................................................. 72

Transferts et échangeurs de chaleur

Cours Transferts thermiques 2

ème année Ecole des Mines Nancy 44.3.2

Facteur de forme géométrique ...................................................................................................... 72

4.3.3 Calcul des flux ............................................................................................................................... 73

4.3.4 Analogie électrique ....................................................................................................................... 75

4.4 EMISSION ET ABSORPTION DES GAZ ........................................................................................................... 77

4.4.1 Spectre d"émission des gaz ............................................................................................................ 77

4.4.2 Echange thermique entre un gaz et une paroi ............................................................................... 77

5 TRANSFERT DE CHALEUR PAR CONVECTION .............................................................................. 79

5.1 RAPPELS SUR L"ANALYSE DIMENSIONNELLE .............................................................................................. 79

5.1.1 Dimensions fondamentales ............................................................................................................ 79

5.1.2 Principe de la méthode .................................................................................................................. 79

5.1.3 Exemple d"application................................................................................................................... 80

5.1.4 Avantages de l"utilisation des grandeurs réduites ........................................................................ 81

5.2 CONVECTION SANS CHANGEMENT D"ETAT ................................................................................................. 82

5.2.1 Généralités. Définitions ................................................................................................................ 82

5.2.2 Expression du flux de chaleur ....................................................................................................... 83

5.2.3 Calcul du flux de chaleur en convection forcée ............................................................................ 84

5.2.4 Calcul du flux de chaleur en convection naturelle ........................................................................ 89

5.3 CONVECTION AVEC CHANGEMENT D"ETAT ................................................................................................ 90

5.3.1 Condensation................................................................................................................................. 90

5.3.2 Ebullition ....................................................................................................................................... 93

6 INTRODUCTION AUX ECHANGEURS DE CHALEUR ..................................................................... 97

6.1 LES ECHANGEURS TUBULAIRES SIMPLES .................................................................................................... 97

6.1.1 Généralités. Définitions ................................................................................................................ 97

6.1.2 Expression du flux échangé ........................................................................................................... 97

6.1.3 Efficacité d"un échangeur ........................................................................................................... 102

6.1.4 Nombre d"unités de transfert ....................................................................................................... 103

6.1.5 Calcul d"un échangeur ................................................................................................................ 105

6.2 LES ECHANGEURS A FAISCEAUX COMPLEXES ........................................................................................... 105

6.2.1 Généralités .................................................................................................................................. 105

6.2.2 Echangeur 1-2 ............................................................................................................................. 106

6.2.3 Echangeur 2-4 ............................................................................................................................. 106

6.2.4 Echangeur à courants croisés ..................................................................................................... 107

6.2.5 Echangeurs frigorifiques ............................................................................................................. 108

BIBLIOGRAPHIE ............................................................................................................................................ 111

ANNEXES ......................................................................................................................................................... 112

A.1.1 : PROPRIETES PHYSIQUES DE CERTAINS CORPS ........................................................................................... 112

A.1.1 : PROPRIETES PHYSIQUES DE L"AIR ET DE L"EAU ........................................................................................ 113

A.2.1 : VALEUR DU COEFFICIENT DE FORME DE CONDUCTION ............................................................................. 115

A.2.2 : EFFICACITE DES AILETTES ........................................................................................................................ 116

A.2.3 : EQUATIONS ET FONCTIONS DE BESSEL ..................................................................................................... 117

A.3.1 : PRINCIPALES TRANSFORMATIONS INTEGRALES : LAPLACE, FOURIER, HANKEL ....................................... 119

A.3.2 : TRANSFORMATION DE LAPLACE INVERSE ................................................................................................ 121

A.3.3 : CHOIX DES TRANSFORMATIONS INTEGRALES POUR DIFFERENTES CONFIGURATIONS................................ 123

A.3.4 : VALEUR DE LA FONCTION ERF .................................................................................................................. 125

A.3.5 : MILIEU SEMI-INFINI AVEC COEFFICIENT DE TRANSFERT IMPOSE ............................................................... 125

A.3.6 : MATRICES QUADRIPOLAIRES POUR DIFFERENTES CONFIGURATIONS ........................................................ 126

A.4.1 : EMISSIVITE DE CERTAINS CORPS .............................................................................................................. 128

A.4.2 : FRACTION D"ENERGIE F0-lT RAYONNEE PAR UN CORPS NOIR ENTRE 0 ET l ............................................. 129

Table des matières

Yves Jannot 5A.4.3 :

FACTEURS DE FORME GEOMETRIQUE DE RAYONNEMENT ......................................................................... 130

A.4.4 : EPAISSEURS DE GAZ EQUIVALENTES VIS-A-VIS DU RAYONNEMENT .......................................................... 133

A.5.1 : LES EQUATIONS DE CONSERVATION ......................................................................................................... 134

A.5.2 : CORRELATIONS POUR LE CALCUL DES COEFFICIENTS DE TRANSFERT EN CONVECTION FORCEE................ 140

A.5.3 : CORRELATIONS POUR LE CALCUL DES COEFFICIENTS DE TRANSFERT EN CONVECTION NATURELLE ......... 142

A.6.1 : ABAQUES NUT = F(h) POUR LES ECHANGEURS ........................................................................................ 143

A.7 : METHODES D"ESTIMATION DE PARAMETRES ............................................................................................... 143

A.7 : METHODES D"ESTIMATION DE PARAMETRES ............................................................................................... 144

EXERCICES ..................................................................................................................................................... 150

Transferts et échangeurs de chaleur

Cours Transferts thermiques 2

ème année Ecole des Mines Nancy 6

NOMENCLATURE

a Diffusivité thermique

Bi Nombre de Biot

c Chaleur spécifique

D Diamètre

e Epaisseur

E Effusivité thermique

f Facteur de forme de rayonnement

F Coefficient de forme de conduction

Fo Nombre de Fourier

g Accélération de la pesanteur

Gr Nombre de Grashof

h Coefficient de transfert de chaleur par convection

DH Chaleur latente de changement de phase

I Intensité énergétique

J Radiosité

L Longueur, Luminance

m Débit massique

M Emittance

Nu Nombre de Nusselt

NUT Nombre d"unités de transfert

p Variable de Laplace p e Périmètre

Q Quantité de chaleur

qc Débit calorifique r, R Rayon, Résistance

Rc Résistance de contact

Re Nombre de Reynolds

S Surface

t Temps

T Température

u Vitesse

V Volume

x, y, z Variables d"espace

Lettres grecques

a Coefficient d"absorption du rayonnement b Coefficient de dilatation cubique e Emissivité f Densité de flux de chaleur

F Transformée de Laplace du flux de chaleur

j Flux de chaleur l Conductivité thermique, longueur d"onde m Viscosité dynamique n Viscosité cinématique hRendement ou efficacité

W Angle solide

r Masse volumique, coefficient de réflexion du rayonnement s Constante de Stefan-Boltzmann t Coefficient de transmission du rayonnement q Transformée de Laplace de la température Généralités sur les transferts de chaleur

Yves Jannot 7

dtdQ=j dtdQ S1=f

1. GENERALITES SUR LES TRANSFERTS DE CHALEUR

1.1 Introduction

La thermodynamique permet de prévoir la quantité totale d"énergie qu"un système doit échanger avec

l"extérieur pour passer d"un état d"équilibre à un autre.

La thermique (ou thermocinétique) se propose de décrire quantitativement (dans l"espace et dans le temps)

l"évolution des grandeurs caractéristiques du système, en particulier la température, entre l"état d"équilibre initial

et l"état d"équilibre final.

1.2 Définitions

1.2.1 Champ de température

Les transferts d"énergie sont déterminés à partir de l"évolution dans l"espace et dans le temps de la

température : T = f (x,y,z,t). La valeur instantanée de la température en tout point de l"espace est un scalaire

appelé champ de température . Nous distinguerons deux cas : Champ de température indépendant du temps : le régime est dit permanent ou stationnaire. Evolution du champ de température avec le temps : le régime est dit variable ou transitoire.

1.2.2 Gradient de température

Si l"on réunit tous les points de l"espace qui ont la même température, on obtient une surface dite surface

isotherme. La variation de température par unité de longueur est maximale le long de la normale à la surface

isotherme. Cette variation est caractérisée par le gradient de température : (1.1)quotesdbs_dbs11.pdfusesText_17