[PDF] NOMBRES COMPLEXES (Partie 1) - Maths & tiques



Previous PDF Next PDF







NOMBRES COMPLEXES (Partie 1) - Maths & tiques

II Conjugué d'un nombre complexe Définition : Soit un nombre complexe z=a+ib On appelle nombre complexe conjugué de z, le nombre, noté z, égal à a−ib Exemples : - z=4+5i et z=4−5i - On peut également noter : 7−3i=7+3i; i=−i; 5=5 Remarque : Les points d'affixes z et z sont symétriques par rapport à l'axe des réels



Les nombres complexes - Partie I

Le complexe est appelé conjugué de et est noté Exemple Le conjugué de est L'inverse de est L'inverse de est Le conjugué d'un complexe permet de caractériser les nombres réels et les nombres imaginaires purs (ceux dont la partie réelle est nulle) parmi les complexes : Soit z un nombre complexe imaginaire pur si



Nombres complexes

1 Notation algébrique d'un nombre complexe 1 1 Dé nition On appelle nombre complexe tout élément zpouvant s'écrire sous la forme z= a+ib; avec (a;b) un couple de réels et iune solution de l'équation i2 = 1 L'ensemble des nombres complexes est noté C Dé nition (Nombre complexe)



Nombres complexes

Le point M est appelé image du nombre complexe z, et le nombre z affixe du point M 1 2 Conjugaison On peut définir sur les nombres complexes une autre opération qui sera la première pour laquelle nous aurons une interprétation géométrique simple : Définition 5 Soit z = a + ib un nombre complexe, on appelle conjugué de z, et on note



Les nombres complexes - maths-francefr

par a−ib qui est le conjugué du dénominateur Conjugué Soit z ∈ C On pose z = a+ib où a et b sont deux réels Le conjugué de z est z = a−ib Pour tout nombre complexe z, z est réel si et seulement si z = z Pour tout nombre complexe z, z est imaginaire pur si et seulement si z = −z Propriétés de calculs



Nombres complexes

Propriété – Tout nombre réel est un carré dans C Démonstration – Tout nombre réel positif est déjà un carré dans R Pour tout ∈ R−, on trouve = i − 2 Remarque – L’ensemble C n’est pas muni d’une relation d’ordre total compatible En particulier, le nombre i n’est ni inférieur, ni supérieur à 0 2 Conjugué



Nombres complexes

Dé nition 2 : Conjugué d'un nombre complexe On appelle conjugué d'un nombre complexe z= x+iyle nombre complexe z = x iy Exemple : B 1 + 2i= 1 2iet 3 i 2 = 3 + i 2 Remarque : B Pour tout nombre complexe z, z = z Théorème 2 Pour tout nombre complexes z, on a z+ z= 2 Re (z) et z z = 2iIm (z) Un nombre complexe est un nombre réel si et



Chapitre 8 : Nombres complexes, polynômes et fractions

8 1 4 Conjugué et module d’un nombre complexe Exercices: Exercice A 1 5 Définition 8 1 2 Soit z ˘x ¯i y un nombre complexe, alors —le nombre complexe x ¡i y s’appelle le conjugué de z et se note z¯, —le nombre réel p x2 ¯y2 s’appelle le modulede z et se note jzj Voici un résumé des principales propriétés des conjugués



Christophe Bertault — Mathématiques en MPSI NOMBRES COMPLEXES

1 1 FORME ALGÉBRIQUE, CONJUGUÉ, MODULE Nous ne nous demanderons pas ce que sont les nombres complexes dans ce chapitre On vous a dit pendant longtemps que le carré d’un nombre — sous-entendu réel — était toujours positif, et puis tout à coup on a changé d’avis et on vous a

[PDF] conjugué complexe exponentielle

[PDF] inverse d'un nombre complexe

[PDF] conjugue les verbes entre parenthèses au présent de l'indicatif

[PDF] conjuguer les verbes entre parenthèses au passé composé

[PDF] conjuguer les verbes entre parenthèses au temps qui convient

[PDF] mets les verbes entre parenthèses au présent

[PDF] tout les temps de l'indicatif

[PDF] preterit be ing anglais

[PDF] pluperfect en anglais

[PDF] preterit be ing ou preterit simple

[PDF] preterit have

[PDF] preterit be ing equivalent francais

[PDF] pluperfect be ing

[PDF] preterit be anglais

[PDF] prétérit continu

NOMBRES COMPLEXES (Partie 1) - Maths & tiques

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1NOMBRES COMPLEXES (Partie 1) Les nombres complexes prennent naissance au XVIème siècle lorsqu'un italien Gerolamo Cardano (1501 ; 1576), ci-contre, au nom francisé de Jérôme Cardan, introduit

-15

pour résoudre des équations du troisième degré. En 1572, un autre italien, Rafaele Bombelli (1526 ; 1573) publie "Algebra, parte maggiore dell'aritmetica, divisa in tre libri" dans lequel il présente des nombres de la forme

a+b-1

et poursuit les travaux de Cardan sur la recherche de solutions non réelles pour des équations du troisième degré. A cette époque, on sait manipuler les racines carrées d'entiers négatifs mais on ne les considère pas comme des nombres. Lorsqu'une solution d'équation possède une telle racine, elle est dite imaginaire. La notation i apparaît en 1777 siècle avec Leonhard Euler (1707 ; 1783) qui développe la théorie des nombres complexes sans encore les considérer comme de " vrais » nombres. Il les qualifie de nombres impossibles ou de nombres imaginaires. Au XIXe siècle, Gauss puis Hamilton posent les structures de l'ensemble des nombres complexes. Les nombres sans partie imaginaire sont un cas particulier de ces nouveaux nombres. On les qualifie de " réel » car proche de la vie. Les complexes sont encore considérés comme une création de l'esprit. I. L'ensemble

1) Définition Définition : Il existe un ensemble de nombres, noté

, appelé ensemble des nombres complexes qui possède les propriétés suivantes : - contient . - Dans

, on définit une addition et une multiplication qui suivent les mêmes règles de calcul que dans

. - Il existe dans un nombre i tel que i 2 =-1 . - Tout élément z de s'écrit de manière unique sous la forme z=a+ib avec a et b réels. Exemples : 3+4i -2-i i 3 sont des nombres complexes. Vocabulaire : - L'écriture a+ib d'un nombre complexe z est appelée la forme algébrique de z.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2- Le nombre a s'appelle la partie réelle et la nombre b s'appelle la partie imaginaire. On note

Re(z)=a

et

Im(z)=b

. Remarques : - Si b=0 alors z est un nombre réel. - Si a=0

alors z est un nombre imaginaire pur. Méthode : Effectuer des calculs sur les nombres complexes Vidéo https://youtu.be/-aaSfL2fhTY Vidéo https://youtu.be/1KQIUqzVGqQ Calculer et exprimer le résultat sous la forme algébrique.

z 1 =3-5i-3i-4 z 2 =3-2i -1+5i z 3 =2-3i 2 z 4 =2i 13 z 5 1 4-2i z 6 1+i 2-i z 1 =3-5i-3i-4 =3-5i-3i+4 =7-8i z 2 =3-2i -1+5i =-3+15i+2i-10i 2 =-3+15i+2i+10 =7+17i z 3 =2-3i 2 =4-12i+9i 2 =4-12i-9 =-5-12i z 4 =2i 13 =2 13 i 13 =8192×i 2 6 ×i =8192×-1 6 ×i =8192i z 5 1 4-2i 4+2i 4-2i 4+2i 4+2i 16-4i 2 4+2i 16+4 1 5 1 10 i z 6 1+i 2-i 1+i 2+i 2-i 2+i 1+i 2+i 4+1 1 5

2+i+2i-1

1 5 3 5 i

Propriétés : a) Deux nombres complexes sont égaux, si et seulement si, ils ont la même partie réelle et la même partie imaginaire. b) Un nombre complexe est nul, si et seulement si, sa partie réelle et sa partie imaginaire sont nulles. Démonstration : Conséquence immédiate de l'unicité de la forme algébrique.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr3Exemple d'application : Déterminons le nombre complexe z vérifiant

2z-5=4i+z

. On a donc :

2z-z=5+4i

z=5+4i

2) Représentation dans le plan complexe Dans tout le chapitre, on munit le plan d'un repère orthonormé direct

O;u ;v . Définitions : a et b sont deux nombres réels. - A tout nombre complexe z=a+ib , on associe le point M de coordonnées a;b et le vecteur w de coordonnées a;b . - A tout point M a;b et à tout vecteur w a;b , on associe le nombre complexe z=a+ib appelé affixe du point M et affixe du vecteur w . On note M(z) et w

(z). Exemple : Vidéo https://youtu.be/D_yFqcCy3iE Le point M(3 ; 2) a pour affixe le nombre complexe

z=3+2i . De même, le vecteur w a pour affixe z=3+2i . Propriétés : M( z M ) et N( z N ) sont deux points du plan. u (z) et v (z') sont deux vecteurs du plan. a) Le vecteur MN a pour affixe z N -z M . b) Le vecteur u +v a pour affixe z+z' . c) Le vecteur ku , k réel, a pour affixe kz . d) Le milieu I du segment [MN] a pour affixe z I z M +z N 2 YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr4Démonstration : a) On pose : M(x M ;y M et N(x N ;y N . Le vecteur MN a pour coordonnées x N -x Mquotesdbs_dbs29.pdfusesText_35