[PDF] 254 Compléments (fonctions trigonométriques inverses)



Previous PDF Next PDF







PROPERTIES OF ARCTAN - University of Florida

Looking at the near linear relation between arctan(z) and z for z



A Surprising Sum of Arctangents - University of Nebraska

Proof: De ne the function f(a) = arctana + arctan(1 a) f0(a) = 1 1 + a2 + 1 1 + 1 a2 1 a2 = 1 1 + a2 1 1 + a2 = 0 If a >0, let a = p 3 Then we have arctan p 3



ChapitreVFonctions arcsin arccos arctan 1 Définitions

b)les fonctions arctan et arcsin sont strictement croissantes et la fonction arccos strictement décroissante c)les fonctions arcsin et arccos sont continues sur [ 1;1], la fonction arctan



Derivative of arctan(x) - MIT OpenCourseWare

was y = tan−1 x, to get y = cos2(arctan(x)) This is a correct answer but it can be simplified tremendously We’ll use some geometry to simplify it 1 x (1+x2)1/2 y Figure 3: Triangle with angles and lengths corresponding to those in the exam­ ple In this triangle, tan(y) = x so y = arctan(x) The Pythagorean theorem 2



Arccos Arctan - joffrempsi1

a) Montrer que l’ equation Arctan(x−1)+Arctan(x)+Arctan(x+1)=ˇ~2 admet une unique solution, sans la d eterminer explicitement b) D eterminer explicitement la solution de cette equation



Partie I Introduction Exemples

− arctan 1 239 On obtiendra diverses formules faisant intervenir des arctan d’inverses de nombres En particulier, une formule du type Machin est de la forme marctan 1 x +arctan 1 y ≡ π 4 mod π avec m, x, y entiers Partie I Introduction Exemples Pour tout entier naturel non nul m, on appelle Cm l’ensemble des couples de r´eels non



254 Compléments (fonctions trigonométriques inverses)

1 Le domaine de définition de arctan est R 2 y = arctan(x) tan(y)= x et − π 2



Table of Basic Integrals Basic Forms

(10) Z x a2 + x2 dx= 1 2 lnja2 + x2j (11) Z x2 a 2+ x dx= x atan 1 x a (12) Z x3 a 2+ x dx= 1 2 x2 1 2 a2 lnja2 + x2j (13) Z 1 ax2 + bx+ c dx= 2 p 4ac b2 tan 1 2ax+ b p 4ac b2 (14) Z 1 (x+ a)(x+ b) dx= 1 b a ln a+ x b+ x; a6=b



Commonly Used Taylor Series - University of South Carolina

X1 n=0 xn n x 2R cosx = 1 x2 2 + x4 4 x6 6 + x8 8::: note y = cosx is an even function (i e , cos( x) = +cos( )) and the taylor seris of y = cosx has only even powers = X1 n=0 ( 1)n x2n (2n) x 2R sinx = x x3 3 + x5 5 x7 7 + x9 9::: note y = sinx is an odd function (i e , sin( x) = sin(x)) and the taylor seris of y = sinx has only odd

[PDF] limite arctan infini

[PDF] equivalent de arctan en l'infini

[PDF] tangente hyperbolique dérivée

[PDF] tableau de conjugaison ce2

[PDF] lettre de motivation sorbonne licence

[PDF] fonction hyperbolique exo7

[PDF] dérivée cosh

[PDF] lettre de motivation stage immobilier débutant

[PDF] les fonctions hyperboliques et leurs réciproques pdf

[PDF] trigo hyperbolique

[PDF] lettre de motivation agence immobilière sans experience

[PDF] up and down tome 4

[PDF] ch(2x)

[PDF] up and down saison 4 pdf

[PDF] up and down saison 2 pdf ekladata

2.5.4 Compléments (fonctions trigonométriques inverses)Les fonctions trigonométriquesx

?sin(x),x?cos(x),x?tan(x)n"étant pas monotones surR(la fonctionx ?tan(x)n"est même pas définie surRtout entier), pour construire des fonctions inverses (on dit aussi fonctions réciproques) aux fonctions trigonométriques, on est obligé de se restreindre à des intervalles de monotonie de ces fonctions (on prend en général des intervalles de monotonie maximaux).

I.La fonction arcsin:la fonctionx

?sin(x)est monotone (strictement croissante) sur l"intervalle[-π

2,π

2].

On définit alors son inverse, arcsin:[-1,1]

2,π

2],x?arcsin(x).

Il faut retenir que:

1. ledomaine de définitionde la fonction arcsinus est[-1,1]

2.y=arcsin(x)

sin(y)=xet-π 2 ?y?π 2 Les graphes de ces deux fonctions sont symétriques par rapport à la droite d"équationy=x. En utilisant les règles de dérivation de fonctions composées, on montre que la fonctionx ?arcsin(x)est dérivable sur]-1,1[et que arcsin(x))?=1

1-x2⎷

II.La fonction arccos:la fonctionx

?cos(x)est monotone (strictement décroissante) sur l"intervalle [0,π]. On définit son inverse, arccos:[-1,1] ?[0,π],x?arccos(x).

Il faut retenir que:

1. ledomaine de définitionde la fonction arccos est[-1,1]

2.y=arccos(x)

?(cos(y)=xet0?y?π)

2.5 Techniques d"intégration29

Les graphes de ces deux fonctions se déduisent l"un de l"autre par symé- trie orthogonale par rapport à la droite d"équationy=x. En utilisant les règles de dérivation de fonctions composées, on montre que la fonctionx ?arccos(x)est dérivable sur]-1,1[et que arccos(x))?=-1

1-x2⎷

Remarque:En utilisant les définitions des fonctionsarcsin,arccoset les formules trigonométriques usuelles, on montre: ?x?[-1,1],arcsin(x)+arccos(x)=π 2

En effet, pourx?[-1,1], posonsy=arcsin(x).

Nous avons-π

2 ?y?π

2et sin(y)=x. Or on a sin(y)=cos(π

2-y).

Comme0?π

2 -y?π, on obtient arcsin(x)+arccos(x)=y+arcos(cos(π 2 -y))=π 2.

III.La fonction arctan:la fonction tangente est monotone (strictement croissante) sur l"intervalle]-π

2 2[.

L"image de l"intervalle]-π

2

2[par la fonctionx?tan(x)estRtout

entier. La fonction inverse (ou encore réciproque) déduiteest la fonction arctan:R

2,π

2[. Ce qu"il faut retenir:

1. Ledomaine de définitionde arctan estR

2.y=arctan(x)

tan(y)=xet-π 2 < y <π 2 arctanest dérivable surRet on aarctan(x)?=1 1+x2. IV.Complément à la liste des primitives des fonctions usuelles: λdésignant une constante réelle quelconque, nous avons: 1.? 1

1-x2⎷

dx=arcsin(x)+λ 2.? 1

1+x2dx=arctan(x)+λ

30Intégration: fonction réelle d"une variable réelle.

2.6 Intégrales impropres - Définitions et exemplesUne généralisation de la notion d"intégrale définie.2.6.1 Intégrales (impropres) sur un intervalle non bornéDéfinition 2.30.Soienta?R,f:[a,+∞[

?R. On suppose que pour toutb?a,fest intégrable sur l"intervalle fermé borné [a,b].

On pose alors par définition?

a+∞ f(x)dx=lim b ab f(x)dx. L"expression a+∞ f(x)dxest appelée intégrale impropre defsur? a,+∞? Silim b ab f(x)dxexiste et est un nombre réel, alors l"intégrale impropre a+∞ f(x)dxest dite convergente. Silim b ab f(x)dxn"existe pas ou est infinie, alors? a+∞ f(x)dxest dite divergente Note:Nous n"allons pas aborder ici les théorèmes généraux de convergence des intégrales impropres, mais plutôt considérer des cas simples où on sait calculer? ab f(x)dx. Le passage à la limite lorsquebtend vers+∞(ou lorsqueatend vers - ∞comme ci-dessous) nous permettra de décider de la convergence de l"intégrale impropre considérée.

Exemple 2.31.

1.f:?

1,+∞?

?R,f(x)=1 x 2.

Pourb??

1,+∞?

, on afcontinue sur[1,b]et? 1b f(x)dx=? -1 x 1b =1-1 b

On en déduit lim

b ab f(x)dx=1, donc?

1+∞

f(x)dx=1.

2.f:??

1,+∞?

?R,f(x)=1 x.

On a, pourb?1,?

1b f(x)dx=? ln(x)? 1b =ln(b). Comme lim b ?+∞ln(b)=+∞, on en déduit que l"intégrale impropre

1+∞

f(x)dx diverge.

3. L"intégrale impropre?

0+∞

cos(x)dx diverge.

En effet

0b cos(x)dx=? sin(x)? 0b =sin(b)et lim b ?+∞sin(b)n"existe pas.2.6 Intégrales impropres - Définitions et exemples31quotesdbs_dbs45.pdfusesText_45