[PDF] Fonctions de plusieurs variables - Université Paris-Saclay



Previous PDF Next PDF







LIMITES DES FONCTIONS (Partie 1)

La fonction définie par (’)=2+ +, a pour limite 2 lorsque x tend vers +∞ En effet, les valeurs de la fonction se resserrent autour de 2 dès que x est suffisamment grand La distance MN tend vers 0 Si on prend un intervalle ouvert quelconque contenant 2, toutes les valeurs de la fonction appartiennent à cet intervalle dès que x est



LIMITES ET CONTINUITE (Partie 2)

(Partie 2) I Limite d'une fonction composée Exemple : Soit la fonction f définie sur 1 2;+∞ ⎤ ⎦ ⎥ ⎡ ⎣ ⎢par f(x)=2− 1 x On souhaite calculer la limite de la fonction f en +∞ On considère les fonctions u et v définie par : u(x)=2− 1 x et v(x)=x Alors : f(x)=v(u(x)) On dit alors que f est la composée de la fonction u



Limites de fonctions - Exo7

2 Montrer que la limite est la borne supérieure de l’ensemble des valeurs atteintes f(R) Indication pourl’exercice2 N Utiliser l’expression conjuguée Indication pourl’exercice3 N Réponses : 1 La limite à droite vaut +2, la limite à gauche 2 donc il n’y a pas de limite 2 ¥ 3 4 4 2 5 1 2 6 0 7 1 3 en utilisant par exemple que a



Calcul de limites - Free

Calcul de limites page 2 de 3 7 lim x+1 x+ 1 x2 + 1 En essayant d’appliquer les th eor emes sur les op erations, on aboutit a une forme ind etermin ee « 1 1 » Mais on peut appliquer directement le th eor eme du cours sur la limite d’une fonction rationnelle (quotient de polyn^omes) en +1: la fonction rationnelle a la m^eme limite



Chapitre 10 : Limites et continuité des fonctions

Soit f une fonction monotone sur un intervalle ]a;b[, pour −∞ 6a < b 6+∞ 1 Alors f admet une limite finie à gauche et une limite finie à droite en tout réel de ]a;b[, (qui peuvent être différentes) 2 ⋆ Si f est croissante et majorée ou décroissante et minorée, alors f admet une limite finie en b



Limites de fonctions

limite finie ou infinie d'une fonction à l'infini limite infinie d'une fonction en un point limite de somme, produit, quotient et composes de fonctions asymptote parallèle à l'un des axes de coordonnées Nous utiliserons également des techniques de comparaison et d'encadrement pour déterminer des limites 5



Fonctions de plusieurs variables - Université Paris-Saclay

Exemple 1 1 f(x,y) = x2 +y2 1 2 Diff´erentiabilit´e d’une fonction de deux variables D´efinition 1 2 Soit f une fonction de deux variables, d´efinie au voisinage de (0,0) On dit que f est diff´erentiable en (0,0) si elle admet un d´eveloppement limit´e a l’ordre 1, i e si on peut ´ecrire f(x,y) = c+ax+by + p x2 +y2 (x,y),



13 Quelques techniques de calcul des DL

1 3 Quelques techniques de calcul des DL Notation 1 21 Soit f une fonction réelle admettant un développement limité à l’ordre n en x 0 ∈ R,de partie régulière P n 1 On peut utiliser l’une ou l’autre des écritures suivantespour exprimer le DL de f àl’ordren en



Fonctions Trigonométriques - Partie 3 Limites et intégration

Fonctions Trigonométriques - Partie 3 Limites et intégration I - Limites Rappel : les fonctions sinus et cosinus n’admettent pas de limite en +∞ et en –∞ Les théorèmes de comparaison et le théorème « des gendarmes » doivent être utilisés dans de nombreux cas

[PDF] fonction ? deux variables réelles

[PDF] fonction a deux variable exo 7

[PDF] limites et continuité des fonctions de plusieurs variables

[PDF] fonction de plusieurs variables cours mp

[PDF] montrer qu'une fonction est continue sur un intervalle

[PDF] montrer qu'une fonction est continue sur r

[PDF] continuité et dérivabilité

[PDF] continuité d'une fonction en un point exercice

[PDF] prolongement par continuité exemple

[PDF] continuité sur un intervalle exercices corrigés

[PDF] continuité d'une fonction sur un intervalle exercice

[PDF] continuité d'une fonction cours

[PDF] étudier la continuité d'une fonction sur un intervalle

[PDF] limites et continuité cours

[PDF] choisir sa contraception

Fonctions de plusieurs variables - Université Paris-Saclay

Fonctions de plusieurs variables

November 1, 2004

1 Diff´erentiabilit´e

1.1 Motivation

Pour une fonction d"une variablef, d´efinie au voisinage de 0, ˆetre d´erivable en 0, c"est admettre

un d´eveloppement limit´e `a l"ordre 1, f(x) =b+ax+x?(x).

Alorsb=f(0) eta=f?(0).

Interpr´etation g´eom´etrique. La courbe repr´esentative defposs`ede en (0,a) une tangente, la

droite d"´equationy=b+ax.

On veut faire pareil pour une fonction de deux variables. La courbe repr´esentative est remplac´ee

par une surface repr´esentative d"´equationz=f(x,y), la droite tangente par un plan tangent d"´equationz=c+ax+by. La tangence s"exprime en disant que la distance entre le point (x,y,f(x,y)) de la surface et le point (x,y,c+ax+by) du plan est petite devant la distance de (x,y) `a l"origine.

Exemple 1.1f(x,y) =x2+y2.

1.2 Diff´erentiabilit´e d"une fonction de deux variables

D´efinition 1.2Soitfune fonction de deux variables, d´efinie au voisinage de(0,0). On dit quef

estdiff´erentiableen(0,0)si elle admet und´eveloppement limit´e `a l"ordre 1, i.e. si on peut ´ecrire

f(x,y) =c+ax+by+?x

2+y2?(x,y),

o`u?(x,y)tend vers 0 lorsquexetytendent vers 0. Dans ce cas,fadmet des d´eriv´ees partielles en (0,0), et c=f(0,0), a=∂f∂x (0,0),∂f∂y (0,0).

La diff´erentiabilit´e defen un point quelconque(x0,y0)se traduit par le d´eveloppement limit´e

f(x0+u,y0+v) =f(x0,y0) +∂f∂x (x0,y0)u+∂f∂y (x0,y0)v+?u

2+v2?(u,v),

o`u?(u,v)tend vers 0 lorsqueuetvtendent vers 0. Exemple 1.3f(x,y) =x(2-x+y) +y(1-x-y)est diff´erentiable `a l"origine.

En effet,

f(x,y) = 2x+y-x2-y2 = 2x+y+?x

2+y2?(x,y),

1 o`u ?(x,y) =-?x 2+y2 tend vers 0 quandxetytendent vers 0.

Th´eor`eme 1Soitfune fonction de deux variables d´efinie au voisinage de(0,0). Si les d´eriv´ees

partielles ∂f∂x et∂f∂y sont d´efinies au voisinage de(0,0)et continues en(0,0), alorsfest diff´erentiable en(0,0), et son d´eveloppement limit´e `a l"ordre 1 s"´ecrit f(x,y) =f(0,0) +∂f∂x (0,0)x+∂f∂y (0,0)y+?x

2+y2?(x,y).

Exemple 1.4f(x,y) =x(2-x+y) +y(1-x-y)est diff´erentiable en tout point. En effet, on n"a qu"a utiliser le th´eor`eme 1. On peut aussi calculer directement f(x0+u,y0+v) = 2x0+ 2u+y0+v-x20-2x0u-u2-y20-2y0v-v2 = 2x0+y0-x20-y20+ (2-2x0)u+ (1-2y0)v-u2-v2 = 2x0+y0-x20-y20+ (2-2x0)u+ (1-2y0)v+?u

2+v2?(u,v).

1.3 Gradient

D´efinition 1.5Soitfune fonction de deux variables, diff´erentiable tout point d"un domaineD. Songradientest le champ de vecteurs d´efini surDpar ?f: (x,y)?→? ∂f∂x (x,y) ∂f∂y (x,y)? Exemple 1.6Le gradient de la fonction d´efinie surR2parf(x,y) =x2est le champ de vecteurs horizontal?(x,y)f=?2x 0?

1.4 Interpr´etation du d´eveloppement limit´e

Proposition 1.7Sifest diff´erentiable enP, alors pour toute droitet?→P+tvpassant parP, la fonctiont?→f(P+tv)est d´erivable, et ddt f(P+tv)|t=0=?Pf·v. On verra plus loin (th´eor`eme 2) que cette formule est vraie pour toute courbe, et non seulement les droites, sous la forme ddt f(c(t)) =?c(t)f·c?(t).

1.5 Lignes de niveau

D´efinition 1.8On appellelignes de niveaudefles ensembles de la formeLw={(x,y);f(x,y) = w}. Exemple 1.9Les lignes de niveau de la fonctionf(x,y) =x2+y2sont des cercles concentriques. Celles de la fonctionf(x,y) =xysont des hyperboles, `a l"exception de la ligne de niveau 0, qui est la r´eunion de deux droites. 2 Proposition 1.10Le gradient d"une fonction est un vecteur perpendiculaire aux lignes de niveau, pointant dans la direction dans laquelle la fonction augmente. Sa longueur est d"autant plus grande

que la fonction varie rapidement, i.e. que les lignes de niveau sont rapproch´ees. Le gradient indique

la direction de plus grande pente. Preuve.Soitt?→c(t) une ligne de niveau. Alorst?→f(c(t)) est constante, donc 0 = ddt f(c(t)) =?c(t)f·c?(t), ce qui montre que le gradient est orthogonal `a la tangente `a la ligne de niveau. Lorsque l"on se d´eplace dans la direction du gradient, par exemple, part?→c(t) =P+t?Pf, ddt f(c(t))|t=0=?Pf·c?(0) =? ?Pf?2>0, doncfaugmente, d"autant plus vite que? ?Pf?est grand.

Soitvun vecteur unitaire. Alors

ddt f(P+tv)|t=0=?Pf·v est maximum lorsquevest colin´eaire et de mˆeme sens que?Pf, donc?Pfindique la direction de plus grande pente.1.6 G´en´eralisation

De la mˆeme fa¸con, on peut parler de d´eveloppement limit´e et de diff´erentiabilit´e pour une fonction

denvariables (remplacer?x

2+y2par?x

21+···+x2n), puis pour une applicationRn→Rp.

Dans ce cas, les coefficients du d´eveloppement limit´e sont des vecteurs deRp. Exemple 1.11SoitIun intervalle deRetc:I→R2une courbe. Calculer un d´eveloppement

limit´e decen 0, c"est calculer des d´eveloppements limit´es des fonctions coordonn´eesx(t) =a0+

a

1t+t?(t),y(t) =b0+b1t+t?(t), et former le d´eveloppement limit´e vectoriel

c(t) =?a0 b 0? +t?a1 b 1? +t?(t). Proposition 1.12Une applicationF= (f1,...,fp) :Rn→Rpest diff´erentiable si et seulement si chacune de ses composantes l"est.

1.7 La diff´erentielle

D´efinition 1.13SoitF:= (f1,...,fp) :Rn→Rpune application diff´erentiable enP. Sa diff´erentielleenPest l"application lin´eaire deRndansRpqui apparaˆıt comme le terme non

constant du d´eveloppement limit´e `a l"ordre 1 enP. Sa matrice, appel´eematrice jacobienne, a pour

coefficients les d´eriv´ees partielles, J f(P) =( ((∂f

1∂x

1...∂f1∂x

n...... ∂f p∂x

1...∂fp∂x

n) Exemple 1.14SiAest une matrice, alors l"application lin´eairefA:Rn→Rpqu"elle d´efinit est diff´erentiable, et sa matrice jacobienne estAen n"importe quel point. Exemple 1.15Soitf(x,y) = 2x+y-x2-y2. Sa matrice jacobienne est ?2-2x1-2y?. 3 Autrement dit, la matrice jacobienne d"une fonction, c"est son gradient vu comme un vecteur ligne.

Exemple 1.16SoitF(t) =?cos(t)

sin(t)? . Sa matrice jacobienne est?-sin(t) cos(t)?

Autrement dit, la matrice jacobienne d"une courbe, c"est sa d´eriv´ee vue comme un vecteur colonne.

Exemple 1.17SoitF(r,θ) = (rcos(θ),rsin(θ)). Sa matrice jacobienne est ?cos(θ)-rsin(θ) sin(θ)rcos(θ)?

1.8 Matrice jacobienne d"une fonction compos´ee

Il s"agit de g´en´eraliser la formule

(g◦f)?= (g?◦f)f?. Th´eor`eme 2Soientf:Rn→Rpetg:Rp→Rqdes applications. On supposefdiff´erentiable enPetgdiff´erentiable enf(P). Alorsg◦fest diff´erentiable enP, et J g◦f(P) =Jg(f(P))Jf(P).

Preuve.Siv?Rn,

f(P+v) =f(P) +Jf(P)v+?v??(v).

On posew=f(P+v)-f(v). Alors

g(f(P) +w) =g(f(P)) +Jg(f(P))w+?w??(w).

Autrement dit,

g◦f(P+v) =g◦f(P) +Jg(f(P))(Jf(P)v+?v??(v))+?w??(w) =g◦f(P) +Jg(f(P))Jf(P)v+?v??(v),

car?w?/?v?est born´e.Corollaire 1.18SoitIun intervalle deR, soitc:I→R2une courbe dans le plan. Soit

f:R2→Rune fonction sur le plan. Alors (f◦c)?(t) =Jgc?(t) =?c(t)f·c?(t) =∂f∂x (c(t))x?(t) +∂f∂y (c(t))y?(t). Corollaire 1.19Soitf:R2→Rune fonction sur le plan. Soitg:R→Rune fonction d"une variable. Alors J

Corollaire 1.20SoitF:R2→R2,F(r,θ) = (rcos(θ),rsin(θ)), le changement de coordonn´ees

polaires. Soitc:R→R2une courbe param´etr´ee, vue en coordonn´ees cart´esiennes(x(t),y(t))ou

polaires(r(t),θ(t)). Alors la vitesse en coordonn´ees cart´esiennes s"obtient en appliquant la matrice

jacobienne deF`a la d´eriv´ee des coordonn´ees polaires, ?x? y =?cos(θ)-rsin(θ) sin(θ)rcos(θ)?? r? =r?er+θ?reθ. 4

1.9 Condition d"extremum

Proposition 1.21Soitfune fonction `a valeurs r´eelles d´efinie au voisinage d"un pointPdeRn. SiPest un minimum local (resp. maximum local) def, alors le gradient defs"annule enP. Preuve.Casn= 2. SoitP= (x0,y0). A fortiori,x0est un minimum local (resp. maximum

local) de la fonctionx?→f(x,y0), donc sa d´eriv´ee enx0est nulle. Or celle-ci vaut∂f∂x

(P). De mˆeme, ∂f∂x (P) = 0, donc?Pf= 0.Remarque 1.22En g´en´eral, la r´eciproque est fausse.

On peut donner des conditions suivantes plus fortes, faisant intervenir les d´eriv´ees secondes. C"est

l"objet du paragraphe suivant.

2 D´eveloppement limit´e `a l"ordre 2

2.1 Motivation

On s"int´eresse au mouvement dans un champ de forces d´erivant d"un potentielV. Les positions

d"´equilibre correspondent aux points o`u les d´eriv´ees partielles deVs"annulent. Pour qu"une position

d"´equilibrePsoitstable, il vaut mieux queVposs`ede unminimum local strictenP, i.e., que pour v?= 0 assez petit,V(P+v)> V(P). Soitfune fonction d"une variable. Supposons quefadmet un minimum en 0. Alors sa d´eriv´ee f

?(0) s"annule. La r´eciproque n"est pas vraie : la fonction d´efinie surRparf(x) =x3a une d´eriv´ee

nulle en 0 mais n"admet pas de minimum local. Une condition suffisante fait intervenir la d´eriv´ee

seconde. Proposition 2.1Soitfune fonction d"une variable. Supposons quef?(0) = 0etf??(0)>0. Alors fposs`ede un minimum local strict en 0 : pourx?= 0suffisamment petit,f(x)> f(0). Preuve.Le d´eveloppement limit´e de Taylor-Young donne f(x) =f(0) +12 f??(0)x2+x2?(x). Alors f(x)-f(0)x 2=12 f??(0) +?(x)>0

pourxassez petit.On peut aussi parler de d´eveloppement limit´e `a l"ordre 2 pour une fonction de plusieurs vari-

ables. C"est li´e aux d´eriv´ees partielles secondes, cela donne un condition suffisante pour un mini-

mum local strict.

2.2 D´efinition

Proposition 2.2Soitm(x,y) =axrysun polynˆome de degr´er+s. Alors on peut ´ecrirem(x,y) = (?x

2+y2)r+s-1?(x,y)o`u?(x,y)tend vers 0 quandxetytendent vers 0

Autrement dit, d`es quer+s≥2, un monˆomeaxryspeut ˆetre mis dans le reste d"un d´eveloppement

limit´e `a l"ordre 1. Il ne reste donc dans le d´eveloppement limit´e `a l"ordre 1 d"une fonctionfque

des termes de degr´e 0 (le terme constantf(0,0)) et 1 (la diff´erentielle defen (0,0)). On va voir que les monˆomesaxrystels quer+s≥3, peuvent ˆetre mis dans les restes des

d´eveloppements limit´es `a l"ordre 2. Ceux-ci ne comportent donc que des termes de degr´es 0, 1 et

2. Les termes de degr´e 2 sont de la formepx2+rxy+sy2, o`up,qetrsont des constantes. Cela

motive la d´efinition suivante. 5 D´efinition 2.3Soitfune fonction de deux variables d´efinie au voisinage de 0. On dit quef admet und´eveloppement limit´e `a l"ordre 2en(0,0)si on peut ´ecrire f(x,y) =c+ax+by+px2+qxy+ry2+ (x2+y2)?(x,y), o`u?(x,y)tend vers 0 lorsquexetytendent vers 0.

Plus g´en´eralement, on dit quefadmet un d´eveloppement limit´e `a l"ordre 2 en(x0,y0)si on

peut ´ecrire f(x0+u,y0+v) =c+au+bv+pu2+quv+rv2+ (u2+v2)?(u,v), o`u?(u,v)tend vers 0 lorsqueuetvtendent vers 0. Th´eor`eme 3(D´eveloppement limit´e de Taylor-Young).Soitfune fonction de deux variables

d´efinie au voisinage de 0. On suppose quefadmet des d´eriv´ees partielles secondes∂2f∂x

2,∂2f∂x∂y

et

2f∂y

2, et que celles-ci sont continues au voisinage de 0. Alorsfadmet un d´eveloppement limit´e `a

l"ordre 2, f(x,y) =f(0,0) +∂f∂x (0,0)x+∂f∂y (0,0)y+12 (∂2f∂x

2(0,0)x2+ 2∂2f∂x∂y

(0,0)xy+∂2f∂y

2(0,0)y2)

+(x2+y2)?(x,y).

Autrement dit, la plupart des fonctions qu"on rencontrera admetteront un d´eveloppement limit´e.

Exemple 2.4f(x,y) =-cos(x)cos(y)admet en(0,0)le d´eveloppement limit´e f(x,y) =-(1-12 x2+x2?(x))(1-12 y2+y2?(y)) =-1 +12 x2+12 y2+ (x2+y2)?(x,y)).

En(π2

,π2 ), elle admet le d´eveloppement limit´e f(π2 +u,π2 +v) =-sin(u)sin(v)quotesdbs_dbs32.pdfusesText_38