[PDF] Trigonometric Identities



Previous PDF Next PDF







Trigonometric Identities

sin(A+ B) = sinAcosB+ cosAsinB (6) sin(A B) = sinAcosB cosAsinB (7) tan(A+ B) = tanA+ tanB 1 tanAtanB (8) tan(A B) = tanA tanB 1 + tanAtanB (9) cos2 = cos2 sin2 = 2cos2 1 = 1 2sin2 (10) sin2 = 2sin cos (11) tan2 = 2tan 1 tan2 (12) Note that you can get (5) from (4) by replacing B with B, and using the fact that cos( B) = cosB(cos is even) and



Trigonometric Identities - Miami

[sin(x+ y) + sin(x y)] Sum-to-Product Formulas sinx+ siny= 2sin x+y 2 cos x y 2 sinx siny= 2sin x y 2 cos x+y 2 cosx+ cosy= 2cos x+y 2 cos x y 2 cosx cosy= 2sin x+y 2 sin x y 2 The Law of Sines sinA a = sinB b = sinC c Suppose you are given two sides, a;band the angle Aopposite the side A The height of the triangle is h= bsinA Then



44 Trigonometrical Identities

sinA cosA secA = 1 cosA cosecA = 1 sinA cotA = cosA sinA = 1 tanA sin(A±B)=sinAcosB ±cosAsinB cos(A±B)=cosAcosB ∓sinAsinB tan(A±B)= tanA±tanB 1∓tanAtanB 2sinAcosB =sin(A+B)+sin(A−B) 2cosAcosB =cos(A−B)+cos(A+B) 2sinAsinB =cos(A−B)−cos(A+B) sin 2A+cosA =1 1+cot 2A =cosecA, tanA+1=sec2 A cos2A =cos2 A−sin2 A =2cos 2A−1=1



Formulas from Trigonometry

Formulas from Trigonometry: sin 2A+cos A= 1 sin(A B) = sinAcosB cosAsinB cos(A B) = cosAcosB tansinAsinB tan(A B) = A tanB 1 tanAtanB sin2A= 2sinAcosA cos2A= cos2 A sin2 A tan2A= 2tanA



Lesson 183: Triangle Trigonometry

b sin sin b sin sin b sinC c sinB b ≈ ° ⋅ ° = ° = ° = Thus b is the longest side of this triangle Since ∠B is the largest angle in the triangle, this result is consistent Triangle 2: If ∠A =123° = ° ∠ = − − 32 B 180 123 25 To find b: 8 5 25 6 8 32 25 6 8 32 b sin sin b sin sin b sinC c sinB b



Complex numbers and Trigonometric Identities

• Distributing exponents was his only sin • But that’s enough to do an algebra student in • An example, his demise should serve, • For other students who haven’t heard, • Distributing exponents is a sin • It’s enough to do an algebra student in • • Donald E Brook • Mt San Antonio College • ????????+ ????????



Trignometrical Formulae Standard Integrals

2sinA cosB = sin(A+B)+sin(A−B) 2cosA sinB = sin(A+B)−sin(A−B) 2cosA cosB = cos(A+B)+cos(A−B) 2sinA sinB = cos(A−B)−cos(A+B) Hyperbolic Functions sinhx = ex −e−x 2, coshx = ex +e−x 2 Standard Derivatives f(x) f0(x) x nnx −1 sinax acosax cosax −asinax tanax asec2 ax e axae lnx 1 x sinhax acoshax coshax asinhax uv u0 v +uv0 u



Formulas - Hong Kong University of Science and Technology

(a+b)sin 1 2 (b−a) sinacosb= 1 2 (sin(a−b)+sin(a+b)) sinasinb= 1 2 (cos(a−b)−cos(a+b)) cosacosb= 1 2 (cos(a−b)+cos(a+b)) sin(a±b) = sinacosb±cosasinb cos(a±b) = cosacosb∓sinasinb Fourier series Fourier series of f(x) defined on [−L,−L]: 1 2 a0 + X∞ n=1 (an cos(nπx/L)+bn sin(nπ/L)) where an = 1 L Z L −L f(x)cos(nπx/L



Trigonometric Identities Revision : 1

Finally, from equations (2) and (3) we can obtain an identity for tan(A+B): tan(A+B) = sin(A+B) cos(A+B) = sinAcosB +cosAsinB cosAcosB −sinAsinB Now divide numerator and denominator by cosAcosB to obtain the identity we wanted: tan(A+B) = tanA+tanB 1−tanAtanB (16) We can get the identity for tan(A − B) by replacing B in (16) by −B and

[PDF] sin 2a

[PDF] tan = cos/sin ou sin/cos

[PDF] tan = sin/cos

[PDF] cos x pi 2

[PDF] cos x 2

[PDF] sin x pi 2

[PDF] cos x 1

[PDF] cos(a+b) démonstration exponentielle

[PDF] cos a+b démonstration géométrique

[PDF] tan 2a démonstration

[PDF] cos(a-b) démonstration

[PDF] cos(a+b)=cos(a) cos(b)-sin(a) sin(b) démonstration

[PDF] cos a + cos b

[PDF] cos(2x)

[PDF] les misérables tome 3 pdf

Trigonometric Identities

Trigonometric Identities

Pythagoras's theorem

sin

2+ cos2= 1 (1)

1 + cot

2= cosec2(2)

tan

2+ 1 = sec2(3)

Note that (2) = (1)=sin2and (3) = (1)=cos2.

Compound-angle formulae

cos(A+B) = cosAcosBsinAsinB(4) cos(AB) = cosAcosB+ sinAsinB(5) sin(A+B) = sinAcosB+ cosAsinB(6) sin(AB) = sinAcosBcosAsinB(7) tan(A+B) =tanA+ tanB1tanAtanB(8) tan(AB) =tanAtanB1 + tanAtanB(9) cos2= cos2sin2= 2cos21 = 12sin2(10) sin2= 2sincos(11) tan2=2tan1tan2(12) Note that you can get (5) from (4) by replacingBwithB, and using the fact that cos(B) = cosB(cos is even) and sin(B) =sinB(sin is odd). Similarly (7) comes from (6). (8) is obtained by dividing (6) by (4) and dividing top and bottom by cosAcosB, while (9) is obtained by dividing (7) by (5) and dividing top and bottom by cosAcosB. (10), (11), and (12) are special cases of (4), (6), and (8) obtained by putting A=B=.

Sum and product formulae

cosA+ cosB= 2cosA+B2cosAB2(13) cosAcosB=2sinA+B2sinAB2(14) sinA+ sinB= 2sinA+B2cosAB2(15) sinAsinB= 2cosA+B2sinAB2(16) Note that (13) and (14) come from (4) and (5) (to get (13), use (4) to expand cosA= cos( A+B2+AB2) and (5) to expand cosB= cos(A+B2AB2), and add the results).

Similarly (15) and (16) come from (6) and (7).

Thusyou only need to remember (1), (4), and (6): the other identities can be derived from these.quotesdbs_dbs29.pdfusesText_35