[PDF] Limites de fonctions



Previous PDF Next PDF







Chapitre 5 Limites de fonctions - MATHEMATIQUES

Chapitre 5 Limites de fonctions I Limites Le cours sur les limites de fonctions est plus volumineux que le cours sur les limites de suites car pour une suite, on envisage uniquement le cas où l’entier n tend vers +∞ : lim n→+∞ u n Pour les fonctions, la variable x peut tendre vers +∞ ( lim x→+∞ f(x)) ou vers −∞ ( lim x



Limites de fonctions

les opérations sur les limites ne permettent pas de conclure Dans les cas d’indé-termination, il faudra chercher à mettre le terme du plus haut degré en facteur (pour les polynômes et les fonctions rationnelles), à simplifier, à multiplier par la quantité conjuguée (pour les fonctions irrationnelles), à utiliser un théorème de



Chapitre : LIMITES 1ere ES

Chapitre : LIMITES 1ere ES Exercice3 Soit la fonction f définie par : f (x) ˘2x ¯3¡ 5 2x ¯1 1) Calculer la limite de f en ¯1 2) Déterminer l’existence d’une asymptote oblique (d) à la courbe (C f) représentative de la fonction f en ¯1



Cours sur les limites de fonctions et la continuité

Cours sur les limites de fonctions et la continuité M HARCHY TS2-Lycée Agora-2015/2016 1 Limite d’une fonction 1 1 Limite à l’infini 1 1 1 Limite finie d’une fonction à l’infini Définition 1 Soit fune fonction définie sur R ou sur un intervalle de la forme [a; +1[ Soit ‘un réel



Limites et asymptotes - cours et exercices corrigés de

IV Rèqles de calcul sur les limites l) Les limites à connaître f(x) — 00 x limo- f(x) f(x) Asymptotes obr 'ques l) Limite infinie en ou - f la fonction définie par f(x) Etude en semble que f(x) Prend des valeurs aussi grandes que ron vetrt pourvu que x soit assez grand (En effet pour tout rée/ A O f(x) A pourvu que x )



TS Cours sur les limites de suites 1

VI Règles d’opérations algébriques sur les limites (admises sans démonstration) Ces règles sont assez intuitives et ne nécessitent pas un gros effort de mémorisation un et vn sont deux suites définies sur N a et b sont deux réels La lecture des tableaux se fait colonne par colonne On envisage différents cas



LIMITES ET CONTINUITÉ (Partie 1)

En effet, les valeurs de la fonction se resserrent autour de 2 dès que x est suffisamment grand La distance MN tend vers 0 Si on prend un intervalle ouvert quelconque contenant 2, toutes les valeurs de la fonction appartiennent à cet intervalle dès que x est suffisamment grand Définition :



Les suites - Partie II : Les limites

II - Opérations sur les limites II Limite d'une somme 7 Limite d'un produit 8 Limite d'un quotient 8 Exercice 9 Souvent pour calculer des limites, on s'appuie sur des limites de suites usuelles que l'on connaît et on applique des opérations sur celles-ci La plupart du temps ces opérations sont intuitives et relèvent du bon sens, mais



Limites et fonctions continues - Cours et exercices de

Continuité sur un intervalle Vidéo — partie 5 Fonctions monotones et bijections Fiche d’exercices ⁄ Limites de fonctions Fiche d’exercices ⁄ Fonctions continues Motivation Les équations en une variable x qu’on sait résoudre explicitement, c’est-à-dire en donnant une formule pour la solution,

[PDF] correspondance commerciale gratuite

[PDF] comment transformer le courant alternatif en continu pdf

[PDF] comment transformer le courant continu en alternatif

[PDF] passer du courant continu au courant alternatif

[PDF] la monnaie cours pdf

[PDF] création monétaire dissertation

[PDF] cours cristallographie mpsi

[PDF] cours cristallochimie:pdf

[PDF] les différentes formes de cybercriminalité pdf

[PDF] cycle de l'eau explication

[PDF] résumé cycle de l'eau

[PDF] les différentes étapes du cycle de l'eau

[PDF] cycle de l'eau schéma simple

[PDF] cycle de l'eau schéma ? compléter

[PDF] schéma cycle de l'eau 5ème

Limites de fonctions

DERNIÈRE IMPRESSION LE9 octobre 2014 à 9:32

Limites de fonctions

Table des matières

1 Limite finie ou infinie à l"infini2

1.1 Limite finie à l"infini. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Limite infinie à l"infini. . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Limite infinie en un point3

3 Limites des fonctions élémentaires4

4 Opérations sur les limites4

4.1 Somme de fonctions. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.2 Produit de fonctions. . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.3 Quotient de fonctions. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Limite d"une fonction composée6

6 Théorèmes de comparaison8

PAULMILAN1 TERMINALES

TABLE DES MATIÈRES

1 Limite finie ou infinie à l"infini

1.1 Limite finie à l"infini

Définition 1 :Dire qu"une fonctionf

a pour limite?en+∞, signifie que tout intervalle ouvert contenant?, contient toutes les valeurs def(x)pourxassez grand - c"est à dire pour lesxd"un in- tervalle]A;+∞[. On note alors : lim x→+∞f(x) =? A xOC fΔ La droiteΔd"équationy=?est diteasymptote horizontaleàCf Remarque :On définit de façon analogue limx→-∞f(x) =?. Exemple :Les fonctions de référence :x?→1 x,x?→1xnetx?→1⎷xont des limites nulles en+∞et-∞pour les deux premières. Leurs courbes admettent alors l"axe des abscisses comme asymptote horizontale.

1.2 Limite infinie à l"infini

Définition 2 :Dire qu"une fonction

fa pour limite+∞en+∞, signifie que tout intervalle]M;+∞|contient toutes les valeurs def(x)pourxassez grand - c"est à dire pour lesxd"un intervalle ]A;+∞[. On note alors : lim x→+∞f(x) = +∞ A]M Cf O Remarque :Cela implique que la fonctionfn"est pas majorée •On définit de façon analogue limx→-∞f(x) = +∞. •Ainsi que : limx→+∞f(x) =-∞et limx→-∞f(x) =-∞ Exemple :Les fonctions de référence :x?→x,x?→xnetx?→⎷ xont pour limite +∞en+∞. La fonction de référence :x?→xna pour limite+∞en-∞sinest pair et-∞en -∞sinest impair.

PAULMILAN2 TERMINALES

2. LIMITE INFINIE EN UN POINT

Une fonction peut tendre vers+∞en

+∞de plusieurs façons. C"est le cas par exemple des fonctionsx?→x2,x?→xet x?→⎷ x.

•x?→x2tend "rapidement" vers l"in-

fini. La concavité est tournée vers le haut.

•x?→xtend "moyennement" vers l"in-

fini. Pas de concavité.

•x?→⎷xtend "lentement" vers l"in-

fini. La concavité est tournée vers le bas

Trois façons de

tendre vers+∞ ⎷x x x2 O

2 Limite infinie en un point

Définition 3 :Dire qu"une fonction

fa pour limite+∞ena, signifie que tout intervalle]M;+∞|contient toutes les valeurs def(x)pourxassez proche dea- c"est à dire pour lesxd"un inter- valle ouvert contenanta. On note alors : lim x→af(x) = +∞

La droiteΔd"équationx=aest dite

asymptote verticaleàCf a[]C fM O Remarque :on définit de façon analogue limx→af(x) =-∞

On peut aussi définir la limite à gauche

ou à droite dex=alorsque la limite en x=an"existe pas. On notera alors : limite à gauche : lim x→axaf(x)

Exemple :La fonctionx?→1

x2a pour limite+∞en 0. La fonctionx?→1 xn"admet pas de limite en 0, mais admetune limite à gauche (-∞)et à droite (+∞) de 0. 1 x2 1 xO limite

à droite

Limite

à gauche

PAULMILAN3 TERMINALES

TABLE DES MATIÈRES

3 Limites des fonctions élémentaires

Limites en l"infini

f(x)xn1 xn ⎷x1⎷x limx→+∞f(x)+∞0+∞0 limx→-∞f(x)+∞sinpair -∞sinimpair0non défininon défini

Limites en 0

f(x)1 xn

1⎷x

limx→0x>0f(x)+∞+∞ limx→0x<0f(x)+∞sinpair -∞sinimpairnon défini

4 Opérations sur les limites

4.1 Somme de fonctions

Sifa pour limite???+∞-∞+∞

Siga pour limite??+∞-∞+∞-∞-∞ alorsf+ga pour limite?+??+∞-∞+∞-∞F. Ind.

Exemples :

1) Limite en+∞de la fonctionfdéfinie surR?par :f(x) =x+3+1

x lim x→+∞x+3= +∞ lim x→+∞1 x=0?????

Par somme

lim x→+∞f(x) = +∞

2) Limite en+∞et-∞de la fonctionfdéfinie surRpar :f(x) =x2+x

lim x→+∞x2= +∞ lim x→+∞x= +∞???

Par somme

lim x→+∞f(x) = +∞ lim x→-∞x2= +∞ lim x→-∞x=-∞???

Par somme, on ne peut conclure

Forme indéterminée :+∞-∞

4.2 Produit de fonctions

Sifa pour limite???=00∞

Siga pour limite??∞∞∞

alorsf×ga pour limite?×??∞*F. ind.∞* *Appliquer la règle des signes

PAULMILAN4 TERMINALES

4. OPÉRATIONS SUR LES LIMITES

Exemples :

1) Limite en-∞de la fonction précédente :f(x) =x2+x

Pour lever la forme indéterminée, on change la forme def(x). f(x) =x2+x=x2? 1+1 x?

On a alors avec le produit :

lim x→-∞x2= +∞ lim x→-∞1+1 x=1?????

Par produit

lim x→-∞f(x) = +∞

2) Limite en+∞de la fonction définie surR+par :f(x) =x-⎷

x On ne peut résoudre par la somme car c"est une forme indéterminée,on chan- ge alors la forme def(x) f(x) =x-⎷ x=x?

1-1⎷x?

lim x→+∞x= +∞ lim x→+∞1-1 ⎷x=1?????

Par produit

lim x→+∞f(x) = +∞

3) Limite à droite de 0 de la fonction définie surR?par :f(x) =1

quotesdbs_dbs2.pdfusesText_4