[PDF] Cours d’Automatique



Previous PDF Next PDF







F128 Bases de l automatismes - WordPresscom

F128 Bases de l 'automatismes Introduction à la logique CR Il s’agit d’introduire : les bases de l’automatisme (systèmes combinatoires, systèmes séquentiels), Le grafcet et la découverte de l’API Organisation CM: 3 heures TD: 6 heures TP : 6 heures



COMPAGNONS ÉLECTRICIENS DU DEVOIR

AUTOMATISME COURS MODULE 1 DESSINER UN SCHÉMA EN LOGIQUE BINAIRE A) La logique combinatoire: a) Les opérateurs logiques de base: Les opérateurs logiques représentent des fonctions permettant de transformer ou d’associer des valeurs booléennes (0 ou 1) Ces variables représentent un état vrai (1) ou un état faux (0)



A BC D - BTS Electrotechnique

ˆb e ˙e fef˝˝bd de aba ee fce be fˇ c a cefea ˛ ˚b e f˘ fdebe e b˚f fb a f bcef a a be cdc b a a ˝f ca ˘af f fcea f a˘f cee cdda e a b˜ ce b f ad e fea ˆ bf e cdc b ce bf a d cˆf a f f cb a˘f e ˘ ae f˘ae˚b e ˝b ae cdda fce e ceb fb c e b˝bb a e a b ˝f b aac a



Automatismes et Informatique industrielle

Adresse de l’es lave Instruction Adresse du premier mot Nombre de mots Code CRC 16 Trame émise par le maître: 04 03 0002 0001 25 CA - Adresse esclave : 04 - Code fonction 03 = lecture du registre - N° du registre de début de lecture : 2, codé par 0002 - Nombre de registres de lecture : 1, codé par 0001 - CRC : 25 CA



Cours d’Automatique

Ce cours d’Automatique s’inscrit dans le cadre de la deuxie`me anne´e de ≪ cycle ingenieur´ ≫ de l’E´cole Nationale Supe´rieure d’Inge´nieurs de Poitiers (ENSIP) et s’adresse aux e´tudiants de la filie`re Energie´, parcours Maˆıtrise de E´nergie E´lectrique (MEE) Ces derniers ont de´ja` suivi



Automatisme Logique - COURSES

1 9 : Situer le cours ‘ automatisme Logique’ • Il définit 3 opérateurs de base, ainsi qu’une foule de règles et de postulats NON ET OU 14/02/2017



Les fonctions logiques de base

Automatisme Tmel 1 /7 Tension U Les fonctions logiques de base 1 La fonction oui (égalité) • Schéma électrique • Equation La fonction est représentée par une équation L = a • Table de vérité • Texte Il y a égalité entre le fonctionnement de la lampe L et l’action sur le contact a • Symbole logique



COURS AUTOMATIQUE : Notions de Systèmes Asservis

Cours Automatique Niveau : 2 ISET NABEUL - 13 - CHELBI Hassen 2 2 Système en boucle fermée a Définition Un objectif majeur de l’automatique est la conception des lois de commande destinées à élaborer le signal de commande u(t) et ceci pour maîtriser un certain nombre de sorties de grandeurs physiques :

[PDF] automatisme cours et exercices corrigés pdf

[PDF] cours automatisme grafcet pdf

[PDF] introduction sur l'automatisme industrielle

[PDF] exercices corrigés automatisme industriel pdf

[PDF] cours automatisme debutant

[PDF] cours d'économie d'entreprise 2ème année

[PDF] économie d'entreprise définition

[PDF] economie et organisation des entreprises s1 - cours complet s1

[PDF] introduction ? l'économie du développement pdf

[PDF] introduction sur le developpement economique

[PDF] théorie du développement économique

[PDF] économie du développement durable cours

[PDF] économie du développement durable pdf

[PDF] économie du développement master

[PDF] économie du développement livre

Cours d’Automatique

2`emeann´ee ENSIP, parcours MEE

Cours d"Automatique

Repr

´esentations d"´etat lin´eaires

des syst `emes monovariables

Olivier BACHELIER

Courriel :

Olivier.Bachelier@univ-poitiers.fr

Tel : 05-49-45-36-79; Fax : 05-49-45-40-34

2`emeann´ee ENSIP, parcours MEE

Cours d"Automatique

Repr

´esentations d"´etat lin´eaires

des syst `emes monovariables

Olivier BACHELIER

Courriel :

Olivier.Bachelier@univ-poitiers.fr

Tel : 05-49-45-36-79 ; Fax : 05-49-45-40-34

28 juin 2017

R´esum´e

Ce cours d"Automatique s"inscrit dans le cadre de la deuxi`eme ann´ee de?cycle ing´enieur?de l"´EcoleNationaleSup´erieure d"Ing´enieurs dePoitiers (

ENSIP) et s"adresse aux ´etudiants de

la fili`ere´Energie, parcoursMaˆıtrise de´Energie´Electrique (

MEE). Ces derniers ont d´ej`a suivi

un enseignement relatif `a l"´etude des syst`emes lin´eaires mod´elis´es par une fonction de transfert

(approche fr´equentielle). Ce cours s"int´eresse aux mˆemes syst`emes mais propose une ´etude via un

mod`ele diff´erent, appel´e repr´esentation d"´etat lin´eaire (approche temporelle).

Connaissances pr

´ealables souhait´ees :

notions de syst`emes lin´eaires, ´equations diff´erentielles, fonction de transfert enp(voire enz), analyse et commande des syst`emes lin´eaires par approche fr´equentielle, quelques bases d"alg`ebre lin´eaire. ii

Table des mati`eres

1Introduction1

1.1Notion de syst`eme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2Notion de mod`ele. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3Grandes lignes du cours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2Rappel sur la fonction de transfert5

2.1´Equations pr´eliminaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Lin´earit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Mod`ele entr´ee/sortie : l"´equation diff´erentielle. . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Transform´ee de Laplace : de l"´equation diff´erentielle `a la fonction de transfert. . . . . . . 6

2.2Fonction de transfert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Comment obtenir la fonction de transfert?. . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Int´erˆet de la fonction de transfert. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3La repr´esentation d"´etat11

3.1Principe g´en´eral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2De la non-lin´earit´e `a la lin´earit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3Historique de la repr´esentation d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4Comment obtenir un mod`ele d"´etat?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Par le jeu d"´equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.2 Par l"´equation diff´erentielle unique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5De la fonction de transfert `a la repr´esentation d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.1 Cas d"une fonction de transfert strictement propre (m < n). . . . . . . . . . . . . . . . . 17

3.5.1.1R´ealisation diagonale ou quasi diagonale de Jordan. . . . . . . . . . . . . . . 17

3.5.1.2R´ealisation de forme compagne. . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.2 Cas d"une fonction de transfert non strictement propre (m=n). . . . . . . . . . . . . . 20

3.6De la repr´esentation d"´etat `a la fonction de transfert. . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7D"une r´ealisation `a l"autre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7.1 Changement de base. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.7.2 Obtention d"une forme compagne (horizontale). . . . . . . . . . . . . . . . . . . . . . . 22

3.7.3 Obtention d"une forme de Jordan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.7.3.1Les valeurs propresλideAsont distinctes. . . . . . . . . . . . . . . . . . . . 23

3.7.3.2Les valeurs propresλideAsont multiples. . . . . . . . . . . . . . . . . . . . 23

4R´eponse d"un mod`ele d"´etat25

4.1Solution du syst`eme autonome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Matrice de transition d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.2 Solution de l"´equation homog`ene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2Solution de l"´equation d"´etat compl`ete. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3Calcul deeAt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 M´ethode des s´eries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.2 Par la transformation de Laplace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.3 M´ethodes des modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iii

TABLE DES MATI`ERESTABLE DES MATI`ERES

4.4R´egime transitoire : influence des modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5R´eponse impulsionnelle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6R´eponse indicielle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.7R´eponse harmonique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5Stabilit´e des mod`eles d"´etat35

5.1Une approche quasi intuitive : la stabilit´e BIBO. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2Stabilit´e d"un ´etat d"´equilibre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 D´efinition et recherche d"un ´etat d"´equilibre. . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.2 Stabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3Crit`eres de stabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.1 Crit`ere des racines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.1.1rang(A) =n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.1.2rang(A) =n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1.3rang(A)< n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1.4En r´esum´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1.5Stabilit´e interne et stabilit´e BIBO. . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1.6Les marges de stabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.2 Crit`ere de Routh/Hurwitz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3.3 M´ethode de Lyapunov. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6Commandabilit´e et observabilit´e43

6.1D´efinitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.1 Commandabilit´e ou gouvernabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.2 Observabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2Crit`ere de Kalman. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.1 Commandabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.2 Observabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.3 Dualit´e des deux concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3Crit`eres s"appliquant aux formes de Jordan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3.1Adiagonalisable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3.2Anon diagonalisable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4Grammiens de commandabilit´e et d"observabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4.1 D´efinition des grammiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4.2 Interpr´etation des grammiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4.3 Calcul des grammiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5Mod`eles et structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5.1 Diff´erence entre les mod`eles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5.2 Syst`emes composites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.6R´ealisation minimale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.6.1 D´efinition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.6.2 R´ealisation minimale et notion de pˆoles. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.6.3 R´ealisation minimale et stabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7Commande par retour d"´etat55

7.1Notion de retour d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.2Retour d"´etat et performances transitoires : le placementde pˆoles. . . . . . . . . . . . . . . . . . 56

7.2.1 Commandabilit´e et placement de pˆoles. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2.2 Placement de pˆoles sur une r´ealisation canonique. . . . . . . . . . . . . . . . . . . . . . 57

7.2.3 Placement de pˆoles sur une r´ealisation quelconque. . . . . . . . . . . . . . . . . . . . . 58

7.2.3.1Obtention de la forme canonique `a partir de la fonction de transfert. . . . . . . 58

7.2.3.2Obtention de la forme canonique `a partir d"une autre r´ealisation. . . . . . . . . 58

7.2.3.3Algorithme de placement de pˆoles. . . . . . . . . . . . . . . . . . . . . . . . 58

7.3Performances statiques et retour d"´etat : la pr´ecommande. . . . . . . . . . . . . . . . . . . . . . 60

7.4Rejet de perturbation et retour d"´etat : adjonction d"int´egrateurs. . . . . . . . . . . . . . . . . . . 61

iv

TABLE DES MATI`ERESTABLE DES MATI`ERES

7.4.1 Premi`ere approche. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.4.2 Seconde approche. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8Commande par retour de sortie : les observateurs69

8.1Notions pr´eliminaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.1.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.1.2 Principe de l"observation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.1.3 Propri´et´e d"un observateur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.1.4 Condition d"existence d"un observateur. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.1.5`A propos de la transmission directe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2Synth`ese d"un observateur d"ordre minimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2.1 Observateur d"ordre minimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2.2 Proc´edure de Luenberger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8.3Synth`ese d"un observateur d"ordre plein. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.3.1 Observateur d"ordre plein. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.3.2 Proc´edure de synth`ese. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.4Commande par retour d"´etat observ´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9Introduction`a la repr´esentation d"´etat discr`ete81

9.1Rappels sur les signaux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9.1.1 Signaux continus, discrets, quantifi´es, non quantifi´es. . . . . . . . . . . . . . . . . . . . 81

9.1.2 Transformation de signaux. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.1.2.1´Echantillonnage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.1.2.2Quantification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.1.2.3Blocage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9.2Syst`emes discrets lin´eaires. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.2.1 D´efinition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.2.2 Mod`eles externes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.2.2.1´Equation r´ecurrente. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.2.2.2Transformation enz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.2.2.3Fonction de transfert enz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.2.3 Repr´esentation d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9.2.4 Lien entre les mod`eles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.2.4.1D"une r´ealisation `a l"autre. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.2.4.2De l"´equation d"´etat `a la fonction de transfert enz. . . . . . . . . . . . . . . . 88

9.2.4.3De la fonction de transfert enz`a l"´equation d"´etat. . . . . . . . . . . . . . . . 88

9.3Syst`emes ´echantillonn´es. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.3.1 Pourquoi ´etudier les mod`eles discrets? (notion de syst`eme ´echantillonn´e). . . . . . . . . 88

9.3.2 La commande num´erique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

9.3.3´Echantillonnage et th´eor`eme de Shannon. . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.3.4 Obtention d"un mod`ele ´echantillonn´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.3.4.1Calcul deG(z). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.3.4.2Mod`ele d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

9.4R´eponse d"un syst`eme discret. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.4.1 R´eponse du mod`ele d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.4.1.1R´eponse par r´esolution de l"´equation d"´etat. . . . . . . . . . . . . . . . . . . . 93

9.4.1.2Calcul deAk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

9.4.1.3R´eponse d"un syst`eme ´echantillonn´e.. . . . . . . . . . . . . . . . . . . . . . . 94

9.4.2 Analyse de la r´eponse : ´etude des modes. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.5Stabilit´e d"un syst`eme discret. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.5.1 Stabilit´e BIBO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.5.2 Stabilit´e interne. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.5.2.1D´efinition et recherche d"un ´etat d"´equilibre. . . . . . . . . . . . . . . . . . . 96

9.5.2.2Stabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.5.3 Crit`ere des racines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

v

TABLE DES MATI`ERESTABLE DES MATI`ERES

9.5.3.1R´esultat g´en´eral. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.5.3.2Stabilit´e interne et stabilit´e BIBO. . . . . . . . . . . . . . . . . . . . . . . . . 98

9.5.3.3Marge de stabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.5.4 Crit`ere de Jury. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.5.5 M´ethode de Lyapunov. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.5.6 Stabilit´e d"un syst`eme ´echantillonn´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.5.6.1´Echantilonnage d"une boucle ouverte. . . . . . . . . . . . . . . . . . . . . . . 100

9.5.6.2Bouclage d"un syst`eme ´echantillonn´e. . . . . . . . . . . . . . . . . . . . . . . 100

9.6Commandabilit´e/observabilit´ed"un mod`ele discret. . . . . . . . . . . . . . . . . . . . . . . . . 100

9.6.1 D´efinitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.6.1.1Commandabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.6.1.2Observabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.6.2 Crit`ere de Kalman. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.6.2.1Commandabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.6.2.2Observabilit´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.6.2.3Dualit´e des deux concepts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.6.3 Crit`eres s"appliquant aux formes de Jordan. . . . . . . . . . . . . . . . . . . . . . . . . 102

9.6.4 Grammiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.6.4.1D´efinition des grammiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9.6.4.2Interpr´etation des grammiens. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.6.4.3Calcul des grammiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.6.5 Mod`eles et structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.6.6 R´ealisation minimale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.7Commande par retour d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.7.1 Les diff´erentes approches de la commande num´erique. . . . . . . . . . . . . . . . . . . 104

9.7.2 Retour d"´etat discret. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.7.3 Placement de pˆoles par retour d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.7.3.1Commandabilit´e et placement de pˆoles. . . . . . . . . . . . . . . . . . . . . . 105

9.7.3.2Technique de placement de pˆoles. . . . . . . . . . . . . . . . . . . . . . . . . 105

9.8Commande par retour de sortie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10Conclusion107

10.1R´esum´e du cours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

10.2Perspectives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Annexes109

ARappels d"alg`ebre et d"analyse111

A.1`A propos des matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.1.1 Transposition et conjugaison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.1.2 Matrices carr´ees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.1.3 Op´erations sur les matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.1.3.1Addition de matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 A.1.3.2Multiplication de matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.1.4 D´eterminant d"une matrice carr´ee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.1.4.1D´eterminant d"une matrice carr´ee d"ordre 2. . . . . . . . . . . . . . . . . . . 114 A.1.4.2D´eterminant d"une matrice carr´e d"ordre 3 ou plus. . . . . . . . . . . . . . . . 114

A.1.4.3Quelques propri´et´es du d´eterminant. . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.5 Cofacteurs et matrice adjointe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.6 Polynˆome caract´eristique d"une matrice carr´ee. . . . . . . . . . . . . . . . . . . . . . . 115

A.1.7 Rang d"une matrice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.8 Matrices inverses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.8.1D´efinition et calcul. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.1.8.2Propri´et´es des inverses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.1.9 Valeurs propres d"une matrice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

vi

TABLE DES MATI`ERESTABLE DES MATI`ERES

A.1.9.1Structure propre d"une matrice. . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.1.9.2Propri´et´es des valeurs propres. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.1.9.3Propri´et´es des vecteurs propres. . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.1.10 Rang d"une matrice carr´ee, d´eterminant et valeurspropres. . . . . . . . . . . . . . . . . 118

A.1.11 Trace d"une matrice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2`A propos de la d´efinition positive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2.1 Fonction d´efinie positive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.2.2 Matrices Hermitiennes d´efinies en signe. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B`A propos du r´egime transitoire121

B.1Influence du spectre de la matrice d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.2Influence des vecteurs propres deA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.2.1 Couplage modes/sortie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.2.2 couplage modes/commandes en boucle ferm´ee. . . . . . . . . . . . . . . . . . . . . . . 123

B.2.3 Couplage modes/consigne en boucle ferm´ee. . . . . . . . . . . . . . . . . . . . . . . . . 123

B.2.4 En r´esum´e sur les vecteurs propres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.3Influence des z´eros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.3.1 Les z´eros d"un mod`ele d"´etat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.3.2 Contribution des z´eros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

CFormule d"Ackermann pour le placement de pˆoles par retour d"´etat127

C.1Rappel du probl`eme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

C.2R´esolution selon Ackermann. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

D`A propos deZ129

D.1Propri´et´es deZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

D.2Tableau de transform´ees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

ELyapunov et les syst`emes lin´eaires131

E.1Le cas continu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

E.2Le cas discret. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

E.3Le cas ´echantillonn´e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

F`A propos des grammiens135

F.1Signification des grammiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

F.2Invariance des valeurs propres deWcWo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

GMATLABet la repr´esentation d"´etat139

quotesdbs_dbs33.pdfusesText_39