[PDF] Optimisation dune fonction dune variable



Previous PDF Next PDF







Extremums d’une fonction - Parfenoff org

Soit une fonction définie et dérivable sur I = 4 ; 6 dont on donne ci-dessous le tableau de variation T – 4 0 2 6 Variations de B 5 3 1 1 La lecture de ce tableau nous permet d’affirmer : • Que admet sur I un maximum en L F4 et un minimum en L 0 • Que sur ? F1 ; 3 B admet un maximum local en L 2 et un minimum en



3 : FONCTIONS TRINOMES DU SECOND DEGRE

Lorsquea >0, la fonction f: xax bxca 2 + + admet un minimum pour 2 b x a =− Lorsquea



Savoir démontrer qu une fonction admet un extrémum

1 Utiliser la le menu graph, et fonction trace de la calculatrice pour visualiser l ¶allure de la courbe et l ¶ordonnée du point de la courbe d ¶abscisse x = 4 S ¶agit-il d ¶un maximum , ou d ¶un minimum ? 2 Par le calcul, montrer que la fonction f admet un extremum sur , donner la nature et la valeur de cet extremum



Exercices : Fonctions de plusieurs variables : optimisation

2 L’objectif de cette question est de montrer que f admet un minimum global et de le calculer a Justi˙er qu’il su˝t de travailler sur la restriction de f à R [0;+1[ b Étudier, pour y > 0 donné, les variations de la fonction g y: x 2R 7 f(x;y) Montrer qu’elle admet un minmum global m y que l’on exprimera en fonction de y



SECOND DEGRÉ (Partie 1) - maths et tiques

f admet donc un minimum en 1 Ce minimum est égal à 3 Propriété : Soit f une fonction polynôme de degré 2 définie par f(x)=a(x−α) 2 +β, avec a≠0 - Si a>0, f admet un minimum pour x=α Ce minimum est égal à β - Si a



Optimisation dune fonction dune variable

Soient f une fonction définie sur un intervalle fermé borné I = [a;b] Si f est continue, alors la fonction f est bornée et atteint ses bornes, autrement dit f admet un minimum et un maximum global sur I A priori, ces extrema ne sont pas uniques (peuvent être atteints plusieurs fois sur I) C Nazaret Optimisation



Bornes supérieures et inférieures

1 Montrer que admet une borne inférieure et la déterminer, est-ce un minimum ? 2 Montrer que admet une borne supérieure et la déterminer, est-ce un maximum ? Allez à : Correction exercice 6 : Exercice 7 : Soit ={2 2 +3; , ∈ℕ∗} 1 Montrer que est minoré et majoré 2



La dérivée seconde- - HEC Montréal

La rubrique précédente nous a permis d'analyser une fonction par sa dérivée première Les points stationnaires, critiques, minimum et maximum pouvaient tous être déterminés avec cette simple première dérivée Même si la dérivée première donne beaucoup d'information à propos d'une fonction,



Continuité et dérivabilité d’une fonction

Remarque : Parfois la fonction f n’admet pas une limite en a, mais admet une limite à droite et une limite à gauche C’est le cas de la fonction partie entière E (voir plus loin) On a par exemple : lim x→2− E(x)=1 et lim x→2+ E(x)=2 1 2 Continuité en un point Définition 2 : Soit une fonction f définie sur un intervalle ouvert

[PDF] liste des députés honoraires

[PDF] narrateur témoin

[PDF] narrateur intradiégétique

[PDF] homodiégétique

[PDF] statut narrateur

[PDF] comment présenter un journal écrit

[PDF] 1000 exercices pour bien progresser aux échecs pdf

[PDF] 100 exercices pour progresser aux échecs pdf

[PDF] echecs au cycle 2

[PDF] expliquer l'origine des règles

[PDF] apprendre les échecs ? l'école

[PDF] quel est le devenir de l'ovule apres l'ovulation

[PDF] progression échecs cycle 3

[PDF] projet pédagogique jeu d'échecs

[PDF] de quel organe proviennent les règles

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéOptimisation d"une fonction d"une variable

1ère année

E.N.S.T.B.B.

I.P.B.

Année Universitaire 2015-16

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéPlan

1Introduction

2Définition: minimum, maximum

3Propriétés

4Convexité

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéPlan

1Introduction

2Définition: minimum, maximum

3Propriétés

Existence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordre

4Convexité

Définition et propriétés d"une fonction convexe

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéOn s"intéresse ici à la recherche de minimum ou maximum d"une fonction réellef:IR!R.Lorsque l"on cherche x vérifiant

Minimiserf(x)

x2I on dit que l"on a un problème d"optimisation.

La f onctionfest

souvent appelée fonction objectif.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéOn s"intéresse ici à la recherche de minimum ou maximum d"une fonction réellef:IR!R.Lorsque l"on cherchex vérifiant

Minimiserf(x)

x2Ion dit que l"on a un problème d"optimisation.La f onctionfest souvent appelée fonction objectif.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéOn s"intéresse ici à la recherche de minimum ou maximum d"une fonction réellef:IR!R.Lorsque l"on cherchex vérifiant

Minimiserf(x)

x2Ion dit que l"on a un problème d"optimisation.La fonctionfest souvent appelée fonction objectif.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéOn s"intéresse ici à la recherche de minimum ou maximum d"une fonction réellef:IR!R.Lorsque l"on cherchex vérifiant

Minimiserf(x)

x2Ion dit que l"on a un problème d"optimisation.La fonctionfest souvent appelée fonction objectif.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéC. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéPlan

1Introduction

2Définition: minimum, maximum

3Propriétés

Existence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordre

4Convexité

Définition et propriétés d"une fonction convexe

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

Convexitéminimum global et local

Définition

Soit f une fonction définie sur I et x

2I.On dit que f admet un minimum (resp. maximum ) global

sur I au point x , si

8x2I f(x)f(x):

(resp: f(x)f(x))On dit que f admet un minimum (resp. maximum ) local au point x , s"il existe un intervalle ouvert JI contenant x tel que

8x2J f(x)f(x):

(resp: f(x)f(x))C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

Convexitéminimum global et local

Définition

Soit f une fonction définie sur I et x

2I.On dit que f admet un extremum en x

si et seulement si f admet un maximum ou un minimum en x .Si les inégalités des définitions précédentes sont strictes, on parle d"extremum (min ou max) strict.Remarque

Un extremum global est un extremum local.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

Convexité

Figure:la f onctionx7!x2présente un minimum global strict en 0.C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

Convexité-5

0 5 10

0.00.51.01.52.02.53.0

Maximum localMaximum global

Minimum local

Figure:

f onctionprésentant des maxim umsstr ictslocaux et globaux, un minimum local et des minima globaux non stricts sur[5;10]C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéFigure:f onctionprésentant des e xtremanon str icts.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordrePlan

1Introduction

2Définition: minimum, maximum

3Propriétés

Existence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordre

4Convexité

Définition et propriétés d"une fonction convexe

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordrePlan

1Introduction

2Définition: minimum, maximum

3Propriétés

Existence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordre

4Convexité

Définition et propriétés d"une fonction convexe

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordrethéorème de Weierstrass L"existence d"extrema n"est pas garantie pour toute fonction. Mais sur un intervalle fermé borné...Théorème Soient f une fonction définie sur un intervalle fermé borné I= [a;b]. Si f est continue, alors la fonction f est bornée et atteint ses bornes, autrement dit f admet un minimum et un maximum global sur I. A priori, ces extrema ne sont pas uniques (peuvent être atteints plusieurs fois sur I).

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExistence Si la recherche d"un minimum ne se limite pas à un intervalle fermé borné, on a aussi le résultat suivant:Définition Une fonction f est dite coercive surRsi " elle tend vers l"infini à l"infini » limjxj!+1f(x) = +1 ou coercive sur un intervalle ouvert]a;b[si lim x!af(x) = +1etlimx!bf(x) = +1C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreSoit

un intervalle ouvert.Théorème

Toute fonction continue et coercive sur

atteint son minimum sur .C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordrePlan

1Introduction

2Définition: minimum, maximum

3Propriétés

Existence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordre

4Convexité

Définition et propriétés d"une fonction convexe

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreCondition d"optimalité du 1er ordre

Théorème

Si f est une fonction définie et dérivable sur un intervalle ouvert

I et si f admet en un point x

de I un extremum alors f

0(x) =0:C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreRemarque

La réciproque de ce théorème est fausse (la fonction x7!x3admet une dérivée nulle en0mais ce n"est pas un extremum).Si f

0(x) =0, on dit que xest un point critique de f. Les

extrema sur l"ouvert I sont à chercher parmi les points critiques.Si on cherche un extremum sur un intervalle fermé[a;b], on fera l"étude sur]a;b[ouvert puis on comparera à f(a)et f(b).C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExemple

Soit la fonction f(x) =x2. SurRcette fonction présente un minimum en x=0, point où elle est dérivable de dérivée nulle.

Elle n"admet pas de maximum surR.

En revanche, si on s"intéresse à f sur I= [1;1]. D"après le théorème de W, la fonction admet un min et un max sur I. On étudie les extrema sur]1;1[puis on calcule f(1)et f(1).Le minimum est atteint en x=0et vaut0. Le maximum qui vaut1 est atteint en deux points x=1et x=1.C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExemple

Soit la fonction f(x) =x2. SurRcette fonction présente un minimum en x=0, point où elle est dérivable de dérivée nulle.

Elle n"admet pas de maximum surR.En revanche, si on s"intéresse à f sur I= [1;1]. D"après le

théorème de W, la fonction admet un min et un max sur I.On étudie les extrema sur]1;1[puis on calcule f(1)et f(1).Le minimum est atteint en x=0et vaut0. Le maximum qui vaut1 est atteint en deux points x=1et x=1.C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExemple

Soit la fonction f(x) =x2. SurRcette fonction présente un minimum en x=0, point où elle est dérivable de dérivée nulle.

Elle n"admet pas de maximum surR.En revanche, si on s"intéresse à f sur I= [1;1]. D"après le

théorème de W, la fonction admet un min et un max sur I.On étudie les extrema sur]1;1[puis on calcule f(1)et f(1).Le minimum est atteint en x=0et vaut0. Le maximum qui vaut1 est atteint en deux points x=1et x=1.C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExemple

Soit la fonction f(x) =x2. SurRcette fonction présente un minimum en x=0, point où elle est dérivable de dérivée nulle.

Elle n"admet pas de maximum surR.En revanche, si on s"intéresse à f sur I= [1;1]. D"après le

théorème de W, la fonction admet un min et un max sur I.On étudie les extrema sur]1;1[puis on calcule f(1)et f(1).Le minimum est atteint en x=0et vaut0. Le maximum qui vaut1 est atteint en deux points x=1et x=1.C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExemple

On peut aussi s"interesser à l"optimum d"une fonction non partout dérivable. Soit la fonction f(x) =pj1x2j. Cette fonction présente un maximum local en x=0, point où elle est dérivable de dérivée nulle et un minima qui vaut0en deux points x=1et x=1.

En1et1, elle n"est pas dérivable.

De plus, en x=0, le maximum est local car f tend vers+1 quand x tend vers l"infini.

En plusieurs dimensions ,les choses

seront au moins aussi délicates...on se contentera de l"étude de fonctions dérivables.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExemple

On peut aussi s"interesser à l"optimum d"une fonction non partout dérivable. Soit la fonction f(x) =pj1x2j. Cette fonction présente un maximum local en x=0, point où elle est dérivable de dérivée

nulle et un minima qui vaut0en deux points x=1et x=1.En1et1, elle n"est pas dérivable.De plus, en x=0, le maximum est local car f tend vers+1

quand x tend vers l"infini.

En plusieurs dimensions ,les choses

seront au moins aussi délicates...on se contentera de l"étude de fonctions dérivables.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExemple

On peut aussi s"interesser à l"optimum d"une fonction non partout dérivable. Soit la fonction f(x) =pj1x2j. Cette fonction présente un maximum local en x=0, point où elle est dérivable de dérivée

nulle et un minima qui vaut0en deux points x=1et x=1.En1et1, elle n"est pas dérivable.De plus, en x=0, le maximum est local car f tend vers+1

quand x tend vers l"infini.En plusieurs dimensions, les choses seront au moins aussi délicates...on se contentera de l"étude de fonctions dérivables.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreExemple

On peut aussi s"interesser à l"optimum d"une fonction non partout dérivable. Soit la fonction f(x) =pj1x2j. Cette fonction présente un maximum local en x=0, point où elle est dérivable de dérivée

nulle et un minima qui vaut0en deux points x=1et x=1.En1et1, elle n"est pas dérivable.De plus, en x=0, le maximum est local car f tend vers+1

quand x tend vers l"infini.En plusieurs dimensions, les choses seront au moins aussi délicates...on se contentera de l"étude de fonctions dérivables.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordre

Figure:f onctionprésentant deux minima str icten 1 et en 1 sans y

être dérivable.

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordrePlan

1Introduction

2Définition: minimum, maximum

3Propriétés

Existence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordre

4Convexité

Définition et propriétés d"une fonction convexe

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéExistence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordreCondition d"optimalité du second ordre

Théorème

Soit f une fonction deux fois dérivable sur un intervalle ouvert I et x

2I un point critique de f. Alors :Si f"(x)>0, f présente en xun minimum local strict.Si f"(x)<0, f présente en xun maximum local strict.Si f"(x) =0, on ne peut rien dire.C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéDéfinition et propriétés d"une fonction convexe Plan

1Introduction

2Définition: minimum, maximum

3Propriétés

Existence: Théorème de Weierstrass

Condition d"optimalité du1er ordre

Condition d"optimalité du second ordre

4Convexité

Définition et propriétés d"une fonction convexe

C. NazaretOptimisation

Introduction

Définition: minimum, maximum

Propriétés

ConvexitéDéfinition et propriétés d"une fonction convexequotesdbs_dbs19.pdfusesText_25