[PDF] Exercices de licence - univ-lillefr



Previous PDF Next PDF







Examen de Topologie - corrigé

1 Un espace topologique est un ensemble X muni d'une collection de sous-ensembles T (les éléments de T sont appelés les ouverts de X) véri ant (a) X et ∅ sont des éléments de T ; (b) T est stable pour les intersections nies; (c) T est stable pour les unions quelconques 2



CAHIER D’EXERCICES

On appelle courbe ferm ee simple d’un espace topologique X l’image d’une appli-cation : S1 X continue injective (ou S1 est le cercle unit e du plan euclidien) On rappelle le th eor eme de Jordan sur la 2-sph ere S2: Le compl ementaire S2 n (S1) d’une courbe ferm ee simple dans S2 est la r eunion



TOPOLOGIE-SÉRIE1 Exercice1 A B

Indication: La direction “⇐” est juste dans un espace topologique quelconque (pas forcément métrisable) Exercice4 Pourunespacetopologique(X,T),montrerque



Exercices de licence - univ-lillefr

Exercice 15 Dans un espace topologique, on d´efinit la fronti`ere d’une partie Acomme ´etant ∂A= A\ A 1 Montrer que ∂A= ∂(Ac) et que A= ∂A⇐⇒ Aferm´e d’int´erieur vide 2 Montrer que ∂(A) et ∂( A) sont toutes deux incluses dans ∂A, et donner un exemple ou` ces inclusions sont strictes 3



Corrigédel’examenfinal(durée2h) (le16/12/2016)

III F (1 pt) Démontrer à l’aide de ce qui précède le théorème du cours qui permet d’affirmer que si la boule (0,1] est compacte, alors le R−espace vectoriel est de



Exercice 1

2 3 Donner un exemple d’espace topologique (X,T ) pour lequel la fonction caractéristique χ A: X −→ R n’est continue en aucun point, ceci quel que soit le choix de A 6∈ {∅,X} Par exemple, la topologie grossière 2 4 On munit N de la topologie dont les fermés sont les ensembles finis On considère



1 c1 entre espaces vectoriels munis de topologies Ce domaine

On appelle espace vectoriel norm´e tout espace vectoriel sur K muni d’une norme Tout espace vectoriel norm´e E est muni d’une distance canonique (d(u,v) = ku− vk qui en fait un espace m´etrique et donc un espace topologique Une semi-norme d´efinit ´egalement une topologie qui n’est pas n´ecessairement s´epar´ee



Topologie, Analyse Fonctionnelle

D e nition 1 1 2 Soit Eun espace vectoriel sur K = R ou C Une norme sur Eest une application jj:jj: ER+ v eri ant les propri et es suivante : (1) jjxjj= 0 si et seulement si x= 0 (2) jjx+ yjj jjxjj+ jjyjjpour tous x;y2E (3) jj xjj= j jjjxjjpour tous x2Eet 2K Un espace vectoriel norm e (E;jj:jj) est un espace vectoriel Emuni d’une norme jj:jj



Université Paul Sabatier L3 MAF 2015-2016 Topologie et

complété les annales (dont : rectif et compléments dans le corrigé du partiel de novembre 2013, et énoncé + corrigé du dernier partiel) 1/12/2015 : mises en forme mineures + DM à rendre le 9/12 16/12/2015 : corrigés du DM, du DS et des examens de janvier 2015 et janvier 2014; améliorations dans la partie II : gnolages,



Licence de Math´ematiques

Exercice 2 17 Soient (E,k k) un espace vectoriel norm´e et Fun sous-espace vectoriel, distinct de E Montrer que Fest d’int´erieur vide Exercice 2 18 Soient El’espace des fonctions sur [a,b] a valeurs r´eelles, qui sont born´ees et A⊂ [a,b], non vide On consid`ere Xle sous-ensemble de Edes fonctions nulles sur A Montrer que X= FrX

[PDF] exercices corrigés de topologie licence/pdf

[PDF] relation taux de change et taux d'intérêt

[PDF] parité des taux d'intérêt non couverte

[PDF] les principaux instruments de la politique de change

[PDF] lien entre inflation et taux de change

[PDF] impact de l'inflation sur le taux de change

[PDF] livre gratuit pour apprendre l'arabe

[PDF] l'arabe pour les nuls pdf gratuit

[PDF] vocabulaire arabe francais pdf

[PDF] féminin masculin svt 1ere es fiche

[PDF] féminin masculin svt 1ere es quizz

[PDF] dm svt 1ere es feminin masculin

[PDF] féminin masculin svt 1ere es bac

[PDF] controle svt 1ere s feminin masculin

[PDF] féminin masculin 1ere es exercices

Exercices de licence - univ-lillefr

Exercices de licence

Les exercices sont de :

Corn´elia Drutu (alg`ebre et th´eorie des nombres)

Volker Mayer (topologie, analyse r´eelle)

Leonid Potyagailo (alg`ebre et g´eom´etrie)

Martine Queff´elec (analyse r´eelle, analyse complexe)

Les sujets d"examens sont de :

Anne-Marie Chollet (variable complexe : VC)

Gijs Tuynman (analyse r´eelle et complexe : AR et ARC)

Table des mati`eres2Table des mati`eres

I Topologie4

1 Notions de topologie I4

1.1 Rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Topologie g´en´erale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Adh´erence, int´erieur, fronti`ere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Espaces m´etriques, espaces vectoriels norm´es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Notions de topologie II8

2.1 Topologie s´epar´ee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Topologie induite, topologie produit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Fonctions continues surR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Continuit´e dans les espaces topologiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Topologie des espaces m´etriques, norm´es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Comparaison de topologies et de m´etriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Suites, limites et valeurs d"adh´erence, points d"accumulation et points isol´es . . . . . . . . . . . . . . . . . . . . . . . 14

3 Notions de topologie III15

3.1 Hom´eomorphisme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Dualit´e, isom´etrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Prolongement de fonctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 M´etrique de la convergence uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5 Th´eor`eme de Baire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Connexit´e18

4.1 Connexit´e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Connexit´e par arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Compacit´e21

5.1 Espaces topologiques compacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2 Compacit´e dans les espaces m´etriques, norm´es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

II Analyse r´eelle 27

6 Applications lin´eaires born´ees27

6.1 Applications lin´eaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Formes lin´eaires continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Espaces m´etriques complets, Banach29

7.1 Espaces m´etriques complets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.2 Espaces norm´es, Banach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Th´eor`eme du point fixe32

9 Applications uniform´ement continues34

9.1 Applications uniform´ement continues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

9.2´Equicontinuit´e, th´eor`eme d"Ascoli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10 Applications diff´erentiables37

10.1 Applications diff´erentiables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10.2 Th´eor`eme des accroissements finis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

11 Th´eor`eme d"inversion locale et des fonctions implicites 41

11.1 Th´eor`emes d"inversion; diff´eomorphismes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

11.2 Th´eor`eme des fonctions implicites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

11.3 Sous-vari´et´es deRn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

12 Diff´erentielles d"ordre sup´erieur, formule de Taylor, extremums 46

12.1 Diff´erentielles d"ordre sup´erieur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

12.2 Fonctions harmoniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

12.3 Formule de Taylor, extremums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

13 Equations diff´erentielles48

13.1 Equations diff´erentielles : rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

13.2 Solutions maximales d"´equations diff´erentielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

13.3 Th´eor`eme de Cauchy-Lipschitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

13.4 Syst`emes `a coefficients constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

13.5 R´esolvantes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

13.6 Divers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

III Alg`ebre et g´eom´etrie 57

Table des mati`eres314 G´en´eralit´es sur les groupes57

15 Groupes et actions59

16 Isom´etries euclidiennes60

17 G´eom´etrie diff´erentielle ´el´ementaire deRn62

18 G´eom´etrie et trigonom´etrie sph´erique62

19 Le groupe orthogonal et les quaternions63

20 G´eom´etrie projective I64

21 G´eom´etrie projective II : homographies deCP164

21.1 Applications conformes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

21.2 Propri´et´es des homographies deCP1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

22 G´eom´etrie et trigonom´etrie hyperbolique66

IV Analyse complexe 67

23 S´eries enti`eres67

24 Fonctions holomorphes69

25 Fonctions logarithmes et fonctions puissances71

26 Formule de Cauchy73

quotesdbs_dbs2.pdfusesText_4