[PDF] Systèmes d’équations linéaires - Cours et exercices de



Previous PDF Next PDF







Méthode des déterminants ou méthode de Cramer

Donc le couple (1;10) est solution de ce système (Attention dans un couple, il y a un ordre dans les parenthèses C’est d’abord x, puis y) La méthode des déterminants ou méthode de Cramer Gabriel Cramer était un mathématicien français(1704-1752) qui a mis au point en 1750 une méthode très efficace pour résoudre un système



Materia: Matemática de 5to Tema: Método de Cramer

Resuelve el sistema del Ejemplo A utilizando la regla de Cramer Solución: Ejemplo C Resolver en el siguiente sistema Solución: Si ha intentado resolver este usando la eliminación, se tardaría más de una página de la escritura y reescritura de resolver La Regla de Cramer acelera el proceso de resolución



FORMULES DE CRAMER - touteslesmathsfr

FORMULES DE CRAMER Le but de ce complØment est double : 1) Donner la dØmonstration ØlØmentaire des formules de Cramer dans le cas d™un systŁme de trois Øquations à trois inconnues [thØorŁme 4 7, page 9 de "Toutes les mathØmatiques" (TLM1)]



Calcul avec le logiciel R > cramerv(table)

On est déjà (sans s’en rendre compte) dans une statistique de pros On va utiliser une bibliothèque (pakage) de R : factominer Méthode basée sur une interprétation graphique Mais d’abord commençons par le V de Cramer Vous n’allez plus voir les Stats de la même façon



ÉTERMINANTS 2 Déterminants

(formules de Cramer) Si a1 b2 –a2b1=0 , le système (1) peut ne pas avoir de solution ou avoir une infinité de solutions En utilisant la notation des déterminants, les formules de Cramer s'écrivent : D= ∣a1 b1 a2 b2 Si D≠0 , alors x= ∣c1 b1 c2 b2∣ D, y= ∣a 1c a2 c2∣ D Exercice 2 6 Quand ce n'est pas possible, utilisez une



HAPITRE Systèmes déquations - Serveur de mathématiques

La méthode de Cramer pour les systèmes d'ordre 3 ne figure pas au programme de la 3e Dans l'exemple suivant, nous exposons toutefois un principe de résolution général Exemple et principe de résolution Considérons le système de 3 équations à 3 inconnues : () () 236 3410 2 32 2 3 xyz xyz xyz R S T 1 1



Systèmes d’équations linéaires - Cours et exercices de

1 Résoudre de quatre manières différentes le système suivant (par substitution, par la méthode du pivot de Gauss, en inversant la matrice des coefficients, par la formule de Cramer) : ˆ 2x + y = 1 3x + 7y = 2 2 Choisir la méthode qui vous paraît la plus rapide pour résoudre, selon les valeurs de a, les systèmes suivants : ˆ ax + y = 2



Chapitre V La méthode du pivot de Gauss et ses applications

les solutions de ( ) sont paramétrées par les inconnues non principales Les inconnues s’appellent les inconnues principales, ou pivots Preuve : On fait passer les inconnues non principales dans le second membre et on résout le système triangulaire de Cramer en 2 La méthode du pivot Théorème de Gauss-Jordan



Estimation paramétrique - Institut de Mathématiques de Toulouse

Remarque — Le risque quadratique est la somme de la variance et du carré du biais de l’estimateur L’inégalité de Cramer-Rao et la définition de l’information de Fisher ont été vues en année 3 et ne sont pas rappelées ici 2 Estimation par la méthode des moments Dans cette section, Xest le vecteur formé par un n-échantillon

[PDF] méthode de cramer matrice 4x4

[PDF] méthode de cramer 4 inconnues

[PDF] méthode de cramer 3 inconnues

[PDF] méthode de cramer 2 inconnues

[PDF] couverture de cahier ? imprimer

[PDF] travail couverture cahier maternelle

[PDF] couverture cahier arts plastiques

[PDF] décoration cahier maternelle

[PDF] couverture cahier art plastique 6eme

[PDF] cahier art plastique 6ème

[PDF] cahier d'art plastique original

[PDF] couverture cahier maternelle ps

[PDF] datation absolue svt

[PDF] interview metteur en scène théâtre

[PDF] en quoi le théâtre se différencie t il des autres genres littéraires

Exo7

Systèmes d"équations linéaires

Corrections d"Arnaud Bodin

Exercice 11.Résoudre de quatre manières dif férentesle système sui vant(par substitution, par la méthode du pi votde

Gauss, en inversant la matrice des coefficients, par la formule de Cramer) :

2x+y=1

3x+7y=2

2.

Choisir la méthode qui v ousparaît la plus rapide pour résoudre, selon les v aleursde a, les systèmes

suivants : ax+y=2 (a2+1)x+2ay=1 (a+1)x+ (a1)y=1 (a1)x+ (a+1)y=1

Résoudre les systèmes suivants

8< :x+yz=0 xy=0 x+4y+z=08 :x+y+2z=5 xyz=1 x+z=38 :3xy+2z=a x+2y3z=b x+2y+z=c

Trouver les solutions de

8>>< >:3x+2z=0

3y+z+3t=0

x+y+z+t=0

2xy+zt=0

Étudier l"existence de solutions du système : 8< :ax+by+z=1 x+aby+z=b x+by+az=1: 1 Discuter et résoudre suivant les valeurs des réelsl,a,b,c,dle système : (S)8 >:(1+l)x+y+z+t=a x+(1+l)y+z+t=b x+y+(1+l)z+t=c x+y+z+(1+l)t=d Z 4

2P(x)dx=aP(2)+bP(3)+gP(4):

Indication pourl"exer cice6 NÉcrire les polynômes sous la formeP(x) =ax3+bx2+cx+d. CalculerR4

2P(x)dxd"une part etaP(2)+

bP(3)+gP(4)d"autre part. L"identification conduit à un système linéaire à quatre équations, d"inconnues

a;b;g.3

Correction del"exer cice1 N1.(a) Par substitution.La première équation s"écrit aussiy=12x. On remplace maintenantydans la

deuxième équation

3x+7y=2=)3x+7(12x) =2=)11x=9=)x=911

Onendéduity:y=12x=12911

=711 . Lasolutiondecesystèmeestdonclecouple(911 ;711 N"oubliez pas de vérifier que votre solution fonctionne ! (b)Par le pivot de Gauss.On garde la ligneL1et on remplace la ligneL2par 2L23L1:

2x+y=1

3x+7y=2()2x+y=1

11y=7 Onobtientunsystèmetriangulaire: onendéduity=711 etalorslapremièrelignepermetd"obtenir x=911 (c)Par les matrices.En terme matriciel le système s"écrit

AX=YavecA=2 1

3 7 X=x y Y=1 2 On trouve la solution du système en inversant la matrice :

X=A1Y:

L"inverse d"une matrice 22 se calcule ainsi

siA=a b c d alorsA1=1adbc db c a Il faut bien sûr que le déterminant detA=a b c d =adbcsoit différent de 0.

Ici on trouve

A 1=111 71
3 2 etX=A11 2 =111 9 7

(d)Par les formules de Cramer.Les formules de Cramer pour un système de deux équations sont les

suivantes si le déterminant vérifieadbc6=0 : ax+by=e cx+dy=f=)x= e b f d a b c d ety= a e c f a b c d

Ce qui donne ici :

x= 1 1 2 7 2 1 3 7 911
ety= 2 1 32
2 1 3 7 =711 2. (a)

A vanttout on re gardes"il e xisteune solution unique, c"est le cas si et seulement si le déterminant

est non nul. Pour le premier système le déterminant esta1 a

2+1 2a

=a21 donc il y a une unique solution si et seulement sia6=1.

Biensûrtouteslesméthodesconduisentaumêmerésultat! Parexempleparsubstitution, enécrivant

la première ligney=2ax, la deuxième ligne devient(a2+1)x+2a(2ax) =1. On en déduit que sia6=1 alorsx=4a1a

21puisy=2a2+a2a

21.
4 Traitons maintenant les cas particuliers. Sia=1 alors le système devient :x+y=2

2x+2y=1

Mais on ne peut avoir en même tempsx+y=2 etx+y=12 . Donc il n"y a pas de solution.

Sia=1 alors le système devient :x+y=2

2x2y=1et il n"y a pas de solution.

(b)

Ici le déterminant est

a+1a1 a1a+1 = (a+1)2(a1)2=4a. Sia6=0 alors on trouve la solution unique(x;y). Par exemple avec la formule de Cramer x= 1a1 1a+1

4a=12aety=

a+1 1 a1 1

4a=12a:

Sia=0 il n"y a pas de solution.Correction del"exer cice2 N1.Remarquons que comme le système est homogène (c"est-à-dire les coef ficientsdu second membre sont

nuls) alors(0;0;0)est une solution du système. Voyons s"il y en a d"autres. Nous faisons semblant

de ne pas voir que la seconde ligne impliquex=yet que le système est en fait très simple à résoudre.

Nous allons appliquer le pivot de Gauss en faisant les opérations suivantes sur les lignesL2 L2L1et

L

3 L3L1:

8< :x+yz=0 xy=0 x+4y+z=0()8 :x+yz=0

2y+z=0

3y+2z=0

On fait maintenantL3 2L3+3L2pour obtenir :

8< :x+yz=0

2y+z=0

7z=0 En partant de la dernière ligne on trouvez=0, puis en remontanty=0, puisx=0. Conclusion l"unique solution de ce système est(0;0;0). 2.

On applique le pi votde Gauss L2 L2L1etL3 L3L1:

8< :x+y+2z=5 xyz=1 x+z=3()8 :x+y+2z=5

2y3z=4

yz=2

PuisL3 2L3L2pour obtenir un système équivalent qui est triangulaire donc facile à résoudre :

8< :x+y+2z=5

2y3z=4

z=0()8 :x=3 y=2 z=0 On n"oublie pas de vérifier que c"est une solution du système initial. 3. On f aitles opérations L2 3L2+L1etL3 3L3L1pour obtenir : 8< :3xy+2z=a x+2y3z=b x+2y+z=c()8 :3xy+2z=a

5y7z=3b+a

7y+z=3ca

5 Puis on faitL3 5L37L2, ce qui donne un système triangulaire : 8< :3xy+2z=a

5y7z=3b+a

54z=5(3ca)7(3b+a)

En partant de la fin on en déduit :z=154

(12a21b+15c)puis en remontant cela donne 8< :x=118 (8a+5bc) y=118 (2a+b+7c) z=118 (4a7b+5c)Correction del"exer cice3 NOn commence par simplifier le système : on place la ligne L3en première position pour le pivot de Gauss ; on réordonne les v ariablesdans l"ordre : y;t;x;zpour profiter des lignes déjà simples. 8>>< >:y+t+x+z=0

3y+3t+z=0

yt+2x+z=0

3x+2z=0

On commence le pivot de Gauss avec les opérationL2 L23L1etL3 L3+L1pour obtenir : 8>>< >:y+t+x+z=0

3x2z=0

3x+2z=0

3x+2z=0

Les 3 dernières lignes sont identiques, on se ramène donc à un système avec 2 équations et 4 inconnues :

y+t+x+z=0

3x+2z=0

Nous choisissonsxetycomme paramètres, alorsz=32 xett=xyz=12 xy. Les solutions du système sont donc les x;y;z=32 x;t=12

xyjx;y2RCorrection del"exer cice4 N1.Pour éviter d"a voirà di viserpar aon réordonne nos lignes puis on applique la méthode du pivot :

8< :x+by+az=1L1x+aby+z=bL2ax+by+z=1L3()8 :x+by+az=1L1b(a1)y+ (1a)z=b1L2 L2L1b(1a)y+ (1a2)z=1aL3 L3aL1 On fait ensuiteL3 L3+L2pour obtenir un système triangulaire équivalent au système initial : 8