[PDF] Interactions between Superconductivity and Quantum



Previous PDF Next PDF







Geometrical frustration, phase transitions and dynamical order

magnetic transition at T c = 0 88(1) K frustration index f ’ 14 neutron diffraction : → ordered spin ice → magnetic moments with both ferro and antiferromagnetic components Mirebeau et al , Phys Rev Lett 94 (2005) Dalmas de R´eotier et al , Phys Rev Lett 96 (2006) Yann Chapuis (CEA/Grenoble - Inac/SPSMS) September 2009 12 / 36



Mots de transition et expressions denchaînement

Mots de transition et expressions d'enchaînement INTRODUCTION D'abord À priori En premier lieu À première vue Premièrement ADDITION Aussi De même En outre De plus Encore De surcroît Deuxièmement ÉNUMÉRATION D'abord Ensuite Enfin LIAISON, TRANSITION Bref D'ailleurs Donc D'un autre côté Ensuite En somme En outre Or



Interactions between Superconductivity and Quantum

second order phase transition at T= 0 Characterized by critical exponents, effective dimension d+ z, z∈ [1,3] Non Fermi Liquid (Fermi liquid region vanishes at QCP) Experimentally: ρ(T) = AT2 + ρ 0 (T< T FL), ρ(T) ∝ T(T>> T FL) T FL → 0 at QCP Adiverges at QCP G Knebel etal : J Phys Soc Jpn , 77, 114704 (2008) G Knebel etal : Phys



CONTRIBUTION TO CERTAIN PHYSICAL AND NUMERICAL ASPECTS OF THE

Solving the Heat equation with phase change in 1D and 2D coordinate systems Identification of the thermophysical properties of the soil by inverse problem 1 2 A simplified physical model for phase change in presence of air Conclusions and Perspectives 3 4



INTRODUCTION - Eklablog

Phrase de transition CONCLUSION Rappeler de façon synthétiue les g andes lignes de vote exposé et se demande s’il épond à la p oblématiue choisie) Ouvrir / Élargir vot e exposé à pa ti de vos connaissances en commentant d’autes objets d’étude étudiés en classe ou d’autes œuves ue vous connaissez



Physico-chimie des Polymères et des Milieux Dispersés

Physico-chimie des Polymères et des Milieux Dispersés Sciences et Ingénierie de la Matière Molle Rapport sur le manuscrit intitulé «Mélange de Polymère ou polymère/solvant Thermodynamique et



Sur lutilisation des modèles multi-états pour la mesure et

Soutenance de thèse - Lyon Motivations Taux Incidence Probabilité de transition Assurance crédit PerspectivesRéférences 2 Cancer en phase terminale 2:4 e



Trucs et astuces pour optimiser votre diaporama PowerPoint

Phase 1 : entre 0’ et 10’ : montée en puissance progressive de l’attention Phase 2 : entre 10’ et 20’ : temps de concentration, maximum d’attention Phase 3 : entre 20’ et 30’ : décroissance progressive de l’attention au delà de 30’ : l’indifférence s’installe

[PDF] phrase de transition dissertation philo

[PDF] peut on definir l'homme par la conscience

[PDF] introduction dissertation philosophie inconscient

[PDF] la conscience est elle le propre de l'homme

[PDF] la conscience de soi rend elle libre

[PDF] aide en philo gratuite

[PDF] aide philosophie dissertation

[PDF] méthodologie dissertation philosophie terminale s

[PDF] maphilo net

[PDF] lettre ? ménécée plan

[PDF] lettre ? ménécée explication lineaire

[PDF] lettre ? ménécée explication par paragraphe

[PDF] lettre a menecee fiche de lecture

[PDF] ecrire une chanson en ligne

[PDF] centre cinématographique marocain

Introduction CeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion Interactions between Superconductivity and Quantum Criticality in

CeCoIn

5, URhGe and UCoGe

Ludovic Howald

IMAPEC/SPSMS/INAC/DSM/CEA

17 Rue des Martyrs

38054 Grenoble

France

11 February 2011

Panel:

H. Suderow

C. Meingast

C. Berthier

Thesis supervisor: J.P. Brison

1 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

My PhD work

CeCoIn5

Transport: Resistivity under magnetic field.

Field induced QCP

Analysis of the upper critical field.

Effect of magnetic fluctuations on SC

2 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

My PhD work

CeCoIn5

Transport: Resistivity under magnetic field.

Field induced QCP

Analysis of the upper critical field.

Effect of magnetic fluctuations on SC

Ferromagnetic superconductors URhGe & UCoGe

First Thermal conductivity measurements

Bulk superconducting transition

Other low T contributions than e, magnetic fluctuations?

Two band superconductivity?

Large and anisotropic thermoelectric power

2 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Experimental setups

Low temperature (8mK) high field (8.5T) resistivity on CeCoIn5 First low T thermal conductivity measurement on URhGe and UCoGe

Design of 2 new setups with:

rotating stage sample holder in Ag to allow high field measurements low temperature transformer

3 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Heavy Fermions

S. Nakatsujiet al.: Phys. Rev. Lett., 89, 106402 (2002) G. Knebelet al.: J. Phys. Soc. Jpn., 77, 114704 (2008)

Large effective mass,

Proximity to magnetic phase transition.

4 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Quantum Critical Points (QCP)

second order phase transition atT=0 Characterized by critical exponents, effective dimensiond+z,z[13] Non Fermi Liquid (Fermi liquid region vanishes at QCP)

Experimentally:

(T) =AT2+0(TTFL),(T)T(TTFL)

TFL0 at QCP

Adiverges at QCP

G. Knebelet al.: J. Phys. Soc. Jpn., 77, 114704 (2008) G. Knebelet al.: Phys. Rev. B, 65, 024425 (2001)

5 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Superconductivity

TSC= Ωexp?104(1+)(1+062)?

=N(EF)V

V(rt) =Charges interactions

eeg2ee(rt)+

Spins interactions

s·sg2ss(rt)

At a magnetic QCP soft modes re-enforced

What is the pairing mechanism?Experimental probe of?

6 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Upper critical fieldHc2

Hc2 T

SCunder field is limited by two mechanisms:

Kinetic energy, (given by12m(peA)2):HOrbital?TSCvF? 2

Zeeman splitting:HPauli=ΔgB

J. P. Brison: Habilitation `a Diriger des Recherches (1997)Parameters: effective mass:vF1m gyromagnetic ratio:g characteristic energy scale:Ω coupling constant: TSC m=mb(1+)

HPauli=ΔgBHPauliTSCif

7 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Phase diagram of CeRhIn5

In CeRhIn5one critical pressurePc=25 GPa.

Hc2can be fitted with:

maximum atPc,

Ωconstant,

g smoothly evolves withp andvFonly depend on. G. Knebelet al.: J. Phys. Soc. Jpn., 77, 114704 (2008)

8 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Phase diagram of CeRhIn5& CeCoIn5

G. Knebelet al.: J. Phys. Soc. Jpn., 77, 114704 (2008)

CeCoIn5p=0

CeRhIn

5p=2GPa

G. Knebelet al.: Phys. Status Solidi B, 247, 557 (2010)

9 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Phase diagram of CeRhIn5& CeCoIn5

G. Knebelet al.: J. Phys. Soc. Jpn., 77, 114704 (2008)

CeCoIn5p=0

CeRhIn

5p=2GPa

No sign of QCP underp

G. Knebelet al.: Phys. Status Solidi B, 247, 557 (2010)

9 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Phase diagram of CeRhIn5& CeCoIn5

G. Knebelet al.: J. Phys. Soc. Jpn., 77, 114704 (2008)

No AFM phase detected but close to

AFM (FFLO/Q-phase, Cd doping, ...)

Proximity to a field induced QCP

Hc G. Knebelet al.: Phys. Status Solidi B, 247, 557 (2010) C. F. Micleaet al.: Phys. Rev. Lett., 96, 117001 (2006)

9 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Previous experiments; Field induced QCP

J. Paglioneet al.: Phys. Rev. Lett., 91, 246405 (2003) A. Bianchiet al.: Phys. Rev. Lett., 91, 257001 (2003)

QCP obtained from limit of the Fermi-liquid domain. ((T) =AT2+0)

H(QCP)=Hc2?

magneto-resistance problems at low temperatures (c 1), specific heat data only available down to80mK. At 100mK 70% signal from hyperfine contribution.

10 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

This experiment

3 samples

ACeCoIn5ja-axis

BCeCoIn5jc-axis

CCe099La001CoIn5jc-axis

2 fields orientations:

Hc-axis

H 45c-axis

jc-axis more sensitive to NFL [9] c 1 sample B, C and for 3 samples when H 45 c-axis

Low noise high resolution

(T) =AT2+0(TTFL)

TFLdetermined from2

A

M. A. Tanataret al.: Science, 316, 1320 (2007)

11 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Phase diagrams Hc-axis

J. Paglioneet al.: Phys. Rev. Lett., 91, 246405 (2003) Previous results reproduced with unfavourable geometry (jc-axis),

No true coincidence betweenHc2(0)andHQCP.

12 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

All curves

5 sets of data can be used to

fit

A H?HQCP

TFL H?HQCPz2

13 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Dynamical exponent

A HHQCP. Fits found

=109037

TFL HHQCPz2

Hertz-Millis theory for AFMz=2

for coincidence of divergence ofA coefficient andTFL=0 we need z=116014

Single energy scale:

(T) =a(TT0)2+0A=aT2 0

A H?HQCP

T0 H?HQCP2

T

FL H?HQCPz2

TFLT0=z

14 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

QCP points scenarios

Divergence ofmalong hot spot directions

Mostly developed theory

(Hertz-Millis-Moriya) Predictsz=2, (T)T32(3d),...

Other models: Disorder (Rosch et al.), Kondo

Necklace model (Reyes et al.), ...

Complete reconstruction of the Fermi surface

at QCP: divergence ofmin all directions.

Few theoretical predictions.

15 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

CeCoIn5Phase diagram suggested by Zaum et al.

S. Zaumet al.: arXiv:1010.3175v1 (2010)

F. Ronninget al.: Phys. Rev. B, 73, 064519 (2006)

Conclusion

Proximity between QCP andHc2atp=0

is a coincidence divergence ofAunderp(Ronning et al.)

Hall effect anomaly (Singh et al.)

S. Singhet al.: Phys. Rev. Lett., 98, 057001 (2007)

How to explainHc2?

G. Knebelet al.: Phys. Status

Solidi B, 247, 557 (2010)

16 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Decoupling between maximum ofTSCand maximum of:

Magnetic Pair breaking mechanisms

In CeCoIn5atp=0,ΔCC=45,

BCS value 1.43,

Kos et al. and Bang et al. explain this

jump with magnetic pair breaking effect. [13]T6KTSC=23K (coupling between SC and magnetization needed),

Monthoux et al. show for SC with

strong coupling & AFM pairing pair breaking associated to the QCP the maximum ofTSCis not at the QCP

S. Koset al.: Phys. Rev. B, 68, 052507 (2003)

Y. Bang and A. V. Balatsky: Phys. Rev. B, 69, 212504 (2004) P. Monthoux and G. Lonzarich: Phys. Rev. B, 63, 054529 (2001)

17 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Data of Hc2

First measurements from Miclea et al.

topmaxand recent measurement of

Knebel et al. up to more than 2·pmax

C. F. Micleaet al.: Phys. Rev. Lett., 96, 117001 (2006) G. Knebelet al.: J. Phys.: Condens. Matter, 16, 8905 (2004)

18 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Parameters of the model

TSC(pH)fitted with an Eliashberg model

We include magnetic pair breaking in the calculation:

TSC(H=0)Ω =F( TM)

And definedT= ΩF( TM=0)

+Orbital and paramagnetic limit for field dependence.

Ωconst.

const.≂=01 vary withp

TMvary withp,TM=0 atp=4GPa

vFvary withpas:vF=vF0(1+(p=0))(1+(p)) gvary withpand field orientation (p)given byvF(p)TSCdHc2dTT=TSC Ω,TM(0)and0are related through the conditionT(p=0) =6K.(ΔCC)

TM(p)given byTSC(p)

L. N. Bulaevskiiet al.: Phys. Rev. B, 38, 11290 (1988)

19 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Fits of Hc2

fixed parameters vF0,Ω,

Pressure dependent parameters

,TM,ga,gc C. F. Micleaet al.: Phys. Rev. Lett., 96, 117001 (2006) G. Knebelet al.: J. Phys.: Condens. Matter, 16, 8905 (2004)

20 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Resulting parameters

Maximum ofga,gc,T,andTMaround 0.4GPa in agreement withQCP at this pressure, M. Yashimaet al.: J. Phys. Soc. Jpn., 73, 2073 (2004) M. Nicklaset al.: J. Phys.: Condens. Matter, 13, L905 (2001)

21 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Resulting parameters

Maximum ofga,gc,T,andTMaround 0.4GPa in agreement withQCP at this pressure,

Relatively large value ofgc=8 (could

be reduced to 6 with a lower value of 0)

Difference betweenzm&

ΔTSC,

Contribution of localized moment

may leads to largeg. T. Tayamaet al.: Journal of the Physical Society of Japan,

74, 1115 (2005)

21 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe IntroductionCeCoIn5Ferromagnetic superconductors URhGe & UCoGe Conclusion

Proposed phase diagram

02 4 6 01234
0 1 2 3 5 7

H(T)P(GPa)T(K)

10·TFLT

Conclusion

Features of CeCoIn5

(ΔCC, pressure dependence of:TSC,

0TSC, paramagnetic

limit, ...) in this scenario.

Phase diagram of CeCoIn

5 is a paradigm of an (almost 2D) strongly coupled anti-ferromagnetically mediated superconductor.

22 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe Introduction CeCoIn5Ferromagnetic superconductors URhGe & UCoGeConclusion

Ferromagnetic superconductors

Upper critical field of Ferromagnetic superconductors? D. Aokiet al.: J. Phys. Soc. Jpn., 78, 113709 (2009)

23 / 33

Interactions between Superconductivity and Quantum Criticality in CeCoIn5, URhGe and UCoGe Introduction CeCoIn5Ferromagnetic superconductors URhGe & UCoGeConclusion

Introduction

Co-existence SC+Ferro

Triplet superconductivity,

UnusualHc2: Re-entrance,

positive curvature, strong angular dependence.

W. A. Fertiget al.: Phys. Rev. Lett., 38, 987

(1977)

D. Aokiet al.: J. Phys. Soc. Jpn., 78, 113709

(2009)quotesdbs_dbs11.pdfusesText_17