[PDF] ALGÈBRE ET GÉOMÉTRIE



Previous PDF Next PDF







ALGÈBRE ET GÉOMÉTRIE

sence de l’algèbre au sein de la géométrie, de la géométrie en théorie des nombres, chaque discipline apportant ses outils à l’autre: preuve géométrique de l’existence de solutions pour des équations diophantiennes en arithmétique, démonstration al-



GEOMETRIC ALGEBRA FOR PHYSICISTS - Assets

Contents Preface ix Notation xiii 1 Introduction 1 1 1 Vector(linear)spaces 2 1 2 Thescalarproduct 4 1 3 Complexnumbers 6 1 4 Quaternions 7 1 5 Thecrossproduct 10



Algèbre et géométrie - Mass Gainer

probabilités, Algèbre et géométrie, Topologie et analyse, et elle couvre les notions généralement enseignées sur ces thèmes à ce niveau d’études C’est en troisième année de licence que se constituent les bases à partir desquelles un étudiant pourra, soit aborder un master de mathématiques appliquées ou de mathé-



La théorie des Würfe de von Staudt — Une irruption de l

des éléments imaginaires Certes, l'algèbre des jets est construite en montrant son ana-logie avec celle des nombres mais en même temps, von Staudt insiste sur le caractère purement géométrique de la notion de jet et de leurs opérations La mise en corres-pondance entre les deux algèbres s'effectue par Γ intermédiaire de la notion de



Programmation linéaire - African Virtual University

utilisant les techniques de géométrie et d’algèbre linéaire c) Utiliser les logiciels mathématiques afin de résoudre des problèmes de pro-grammation linéaire d) Discuter des notions théoriques de l’algèbre linéaire et géométrique par rapport à des contextes pratiques et concrets



Fonctions et algèbre 10e - Weebly

Fonctions et algèbre 10e Corrigé FA111 Associations Corrigé FA108 En partant du français Par exemple: a) 15 · n, où nest un nombre entier b) x· y, où xet ysont deux nombres réels c) 5 · x, où xest un nombre réel d) x + y, où xet ysont deux nombres réels e) n+ (n+ 1) + (n+ 2), où nest un nombre entier f) , où xest un nombre



Algèbre Avancée

Algèbre III M1 On en déduit ainsi (φ φ0) ˇ0 = ˇ0 Comme Idpermet l’unique factorisation de ˇ0 à travers P0, on en déduit par la propriété universelle que φ φ0 = IdP0 et, de même, en échangeant P et P0,



Livret de formules pour le cours de mathématiques NM

Thème 1 − Algèbre 3 Thème 2 − Fonctions et équations 4 Thème 3 − Fonctions trigonométriques et trigonométrie 4 d’une suite géométrique finie : 11

[PDF] algèbre groupe exercice corrigé PDF Cours,Exercices ,Examens

[PDF] Algèbre linéaire 3eme Année Bac +3 Mathématiques

[PDF] algèbre linéaire cours exercices corrigés pdf PDF Cours,Exercices ,Examens

[PDF] algèbre linéaire cours pdf PDF Cours,Exercices ,Examens

[PDF] algèbre linéaire espace vectoriel PDF Cours,Exercices ,Examens

[PDF] Algèbre linéaire et espace vectoriel Bac +1 Mathématiques

[PDF] algèbre linéaire exercices PDF Cours,Exercices ,Examens

[PDF] algebre lineaire exercices corrigés pdf PDF Cours,Exercices ,Examens

[PDF] algèbre linéaire matrice PDF Cours,Exercices ,Examens

[PDF] algèbre linéaire pdf PDF Cours,Exercices ,Examens

[PDF] algèbre linéaire pour les nuls PDF Cours,Exercices ,Examens

[PDF] algèbre linéaire pour les nuls pdf PDF Cours,Exercices ,Examens

[PDF] Algèbre linéaire Sous-espace Bac +3 Mathématiques

[PDF] Algebre lineaire: Polynomes de degré < 4 + Calcul vectoriel Bac Mathématiques

[PDF] algebre mathématique PDF Cours,Exercices ,Examens

ALGéBRE

ET

GƒOMƒTRIE

FranoisCOMBES

ProfesseurdeMathŽmatiquesˆlÕUniversitŽ dÕOrlŽans

AVANTPROPOS

enLicencede MathŽmatiques.Lecontenu decetensei gnementdŽcoulaitlui-mme des exigencesdespr ogrammesdesConcours duCAPESetdelÕAgrŽgationde MathŽma- tiqueauxquelsla grandemajoritŽdes Žtudiantsdece cursussedestinaient. quenousavons mentionnŽs,incluantde nombreuxexemples etexercices dÕapplica- tion.Ilintr oduitlesnotions algŽbriquesdegroupe(partieI) etdÕanneau(p artieIII).Il lesutilisedÕune partdans lecadre delagŽomŽtrie afÞneet delagŽomŽtrie euclidienne (partieII),et dÕautrepart enthŽoriedes nombres(partieIV),chapitres importants dans laformationdes futursenseignants. Lesfondementsde lagŽomŽtrie afÞnene sontplusenseignŽs danslesPremiers CyclesUniversitaires oilafallufaire placeˆde nouvellesdisciplines.CÕest dansle degr oupeestpartoutsous-jacenteengŽomŽtrie. Elleytr ouvedÕinnombrablesillustra- tionsetapplications. DepuisF.Klein etH.PoincarŽ, lesgŽomŽtries,euclidiennes ou EngŽomŽtrieplane euclidienne,apparaissent diversgroupes classiques:gr oupedes homothŽtiesettranslations, groupedes isomŽtries,groupe desdŽplacements,groupe dessimilitudes,...dont lastructur edoittr econnue. Parailleurs, lanŽcessitŽdedŽcouperles cursusenUnitŽs dÕenseignementsŽpa- rŽes,crŽe artiÞciellementunedivisiondesmathŽmatiquesen disciplinesquelÕon a tendanceˆconsidŽr ercommedes domainesdisjoints.Or,danslarŽalitŽ, ethistorique- exemple,cÕestle dŽveloppementde lÕanalysequia provoquŽla naissancedela gŽomŽ- trieanalytique au17 e e e briqueau20 e chaquediscipline apportantsesoutilsˆlÕautre :preuve gŽomŽtriquede lÕexistence desolutionspour desŽquationsdiophantiennes enarithmŽtique,dŽmonstration al- etaucompas (quadrature ducercle, contructiondespolygonesrŽguliers,...), etc. vrage,nousavons volontairementlimitŽ lecontenuaux notionsÞgurantexplicitement dansles programmesdesConcoursder ecrutementdesenseignantsduSecond DegrŽ: groupescycliquesetabŽliens,gr oupesymŽtrique,gr oupesdetransformations gŽomŽ- triquesclassiques,anneau despolyn™mes,applications classiquesˆlÕarithmŽtique, ˆ lathŽorie desnombres... Lespartiesde celivre quinesont pasexplicitementau programmeduCAPESde MathŽmatique,etqui concernentplut™tl aprŽparationˆ lÕAgrŽgation,apparaissentˆ factoriels. C.POP, J.F.HA VET,J. P.SCHREIBERqui mÕontaccordŽ beaucoupdetemps

pourmÕaiderˆ surmonterles difÞcultŽspratiques liŽesˆlÕutilisationdeslogiciels, et

quimÕontfait lecadeaule plusprŽcieuxpour unmathŽmaticien: desexemplesintŽ- ressants,desremarques originales,quiont enrichicetouvrage. Jeremer cieŽgalementlesEditionsBREAL,quiontacceptŽ depublierce livre,et VERSIONNUMƒRIQUERE VUEETCORRIGƒEJ.F.H AVETMAI2015

IGROUPES9

1LacatŽgorie desgroupes11

1.1FactorisationdÕune application. ... ... ... ... .. ... ... ... 11

1.2Loide compositioninternesur unensemble. ... ... .. ... ... ..13

1.3Notionde groupe. ... ...... ... ... .. ... ... ... ... ..15

1.4Homomorphismesde groupes. ... ...... ... .. ... ... ... 16

1.5Sous-groupes ...... ... ... ... ... .. ... ... ... ... ..18

1.6Noyauet imagedÕunhomomorphisme ... ... ... .. ... ... ..20

1.8Groupe quotient..... ... ... .. ... ... ... ... ... ... ..23

1.9Factorisationdes homomorphismes.. ... ... ... .. ... ... ..24

1.10Pr oduitdirectdegroupes ...... ... ...... .. ... ... ... .25

1.11CaractŽrisationdu produit direct. ...... ...... ... ... .. ..26

1.12ProcŽdŽ desymŽtrisation.... ... ... ... .. ... ... ... ... .27

1.13Sous-groupes deZetdeR...........................28

1.14Sous-groupe engendrŽparunŽlŽment. ... ... ... ... ... .. ..30

1.15Exercices duchapitre1. ... ...... ... ... .. ... ... ... ..31

2Actionsde groupes39

2.1Groupe agissantsurunensemble.. ... ... .. ... ... ... ... .39

2.2Orbite,stabilisateur dÕunpoint. .. ... ... ... ... ... .. ... .41

2.3ActiondÕun groupeÞni surunensemble Þni..... ... .. ... ... 43

2.6Produits semi-directs... ...... ... ... ... .. ... ... ... .47

2.7CaractŽrisationdes produits semi-directs. ...... ...... ... .. 48

2.8Exercices duchapitre2.. ... ..... ... ... ... ... ... ... .50

3GroupesabŽliens Þnis59

3.1Groupes cycliques,gŽnŽrateurs.... ... .. ... ... ... ... ... 59

3.2Homomorphismesentr egroupes cycliques..... ..... ... ... .60

3.3Sous-groupes dÕungroupecyclique.. ... ...... .. ... ... ... 62

3.4Produit dedeuxgroupescycliques. ... ... ...... .. ... ... .63

3.5Groupes dÕordrepremier. ......... ..... ... ... ... ... .64

3.6DŽcomposition cycliquedÕungr oupeabŽlienÞni ... ...... .. ... 65

3.7Groupes rŽsolubles..... ... ... .. ... ... ... ... ... ... 69

3.8Exercices duchapitre3.. ... ...... ... .. ... ... ... ... .71

5

4Legroupe symŽtrique79

4.1DŽcompositiondÕune permutationencycles ... .. ... ... ... ..79

4.2Cycles conjuguŽs.. ... ... ... ... ... .. ... ... ... ... .80

4.3GŽnŽrateursdu groupe symŽtrique.. ...... ... ... .. ... ... 81

4.4Signature dÕunepermutation.... ... ... ... .. ... ... ... .81

4.5NonrŽsolubilitŽ dugroupe despermutations. ... ...... .. ... .83

4.6Exer cicesduchapitre4. ... ...... ... ... .. ... ... ... ..84

5Sous-groupesde Sylow91

5.2Structur edequelquesgroupesÞnis... ... ... ..... ... ... ..94

5.3Groupes dÕordre8.. ......... .. ... ... ... ... ... ... .96

5.4Exercices duchapitre5.. ... ..... ... ... ... ... ... ... .97

IIGEOMETRIE103

6GŽomŽtrieaf Þne105

6.1Espaceaf ÞneassociŽ ˆunespacevectoriel.. ... ... ... ... .. ..105

6.3Applicationsaf Þnes. ...... ... ... ... ... ... .. ... ... .109

6.4ExistencedÕapplications afÞnes ... ...... ... ... ... .. ... .111

6.5Isomorphismesaf Þnes.. ...... ... ... .. ... ... ... ... .112

6.6Sous-espacesaf Þnes. ...... ... ... ... ... ... .. ... ... .114

6.7Sous-espacesaf Þnesendimension Þnie..... ... .. ... ... ... 115

6.8Sous-espacesaf Þnesetapplications afÞnes.... ... .. ...... ..117

6.9Gr oupeafÞne... ...... ... ... ... .. ... ... ... ... ..118

6.10Groupe deshomothŽtiesettranslations.. ... ... ... .. ... ... 120

6.11OrientationdÕun espaceafÞne rŽel.. ... ..... ... ... ... ... 121

6.12Exercices duchapitre6.. ... ...... ... .. ... ... ... ... .123

7Barycentresen gŽomŽtrieafÞne 133

7.1Barycentres ..... ... ... ... ... ... .. ... ... ... ... ..133

7.2Applicationsaf Þnesetbarycentr es..... ... ..... ... ... ... 135

7.3Sous-espacesaf Þnesetbarycentr es..... ... ..... ... ... ... 136

7.5Espaceaf ÞnehyperplandÕun espacevectoriel.... ... ... .. ... .139

7.6Parties convexesdÕunespace afÞnerŽel ... ... ..... ... ... ..141

7.7Enveloppeconvexe dÕunepartie. ... ... ... .. ... ... ... ..143

7.8PointsextrŽmaux dÕunepartieconvexe ... ... ... .. ... ... ..143

7.11Exercices duchapitre7.. ... ...... ... .. ... ... ... ... .148

8GŽomŽtrieaf Þneeuclidienne153

8.1Espacesaf Þneseuclidiens ...... ... ... ... ... .. ... ... .153

8.2Rappelssur legroupe orthogonal.. ... ...... .. ... ... ... .154

8.3IsomŽtriesaf Þnes.. ...... ... ... .. ... ... ... ... ... .156

8.4SymŽtriesorthogonales ... ... ... ... ... .. ... ... ... ... 157

8.5SymŽtriesglissŽes ... .. ... ... ... ... ... ... .. ... ... .159

8.6IsomŽtriespr oduitsdesymŽtries hyperplanes..... ... .. ... ..160

6

8.7Groupe desisomŽtriesdeE

n .........................162

8.8DŽcompositioncanonique dÕuneisomŽtrie. ... ... .. ... ... ..163

8.9ClassiÞcationdes isomŽtriesdu plan.. ... ... ... ... ... .. ..164

8.10ClassiÞcationdes isomŽtriesde lÕespace.. ... ... ... .. ... ... 166

8.11Groupe dessimilitudes... ... ... ... ... ... .. ... ... ... 170

8.12Sous-groupes Þnisdugroupedes dŽplacements.. ... ...... ... 171

8.13Exercices duchapitre8.. ... ...... ... .. ... ... ... ... .174

IIIANNEAUX187

9GŽnŽralitŽssur lesanneaux189

9.1Les objetsdecette catŽgoriemathŽmatique. ... ... ... .. ... ..189

9.2Les morphismesdanscette catŽgoriemathŽmatique. ... ... ... .. 192

9.3Lessous-anneaux ... ... ... ... ... .. ... ... ... ... ... 194

9.4Sous-anneau engendrŽparune partienonvide ... ... ... .. ... .195

9.5IdŽauxdÕun anneau.. .. ... ... ... ... ... ... .. ... ... .195

9.6Intersectionet sommedÕidŽaux ... ... ... ... ... ... .. ... .196

9.8IdŽauxmaximaux ... ... ... ... ... .. ... ... ... ... ... 199

9.9Corps ... ... ... ... ... ... ... .. ... ... ... ... ... .200

9.11Quotientpar unidŽalmaximal ... ... ... .. ... ... ... ... .204

9.12Sous-corpspr emierdÕuncorps ...... ... .. ... ... ... ... .205

9.13Exercices duchapitre9. ... ...... ... ... ... ... .. ... ..206

10Anneauxde polyn™mes213

10.1Polyn™mesˆ coefÞcientsdans unanneau. ...... .. ... ... ... 213

10.2Divisioneuclidienne ... ... ... ... ... .. ... ... ... ... .215

10.3Fonctionpolynomiale etracines dÕunpolyn™me. ... ... ... ... .216

10.4DŽrivŽeformelle dÕunpolyn™me,formule deTaylor ... ... .. ... .217

10.5MultiplicitŽdÕune racine. ... ... ... ... ... ... ... .. ... .218

10.6Unexemple: lespolyn™mescyclotomiques ... ... ... .. ... ... 219

10.7Groupe K

lorsqueKestuncorps commutatif.. .. ... ... ... ..221

10.8Lepolyn™me dÕinterpolationde Lagrange.. ... ... ... .. ... ..224

10.10Exercices duchapitre10.. ... ..... ... ... ... ... ... ... 226

11Anneauxprincipaux 237

11.1IdŽauxprincipaux, anneauxprincipaux. ... ... .. ... ... ... .237

11.2Exemplesclassiques: lesanneauxeuclidiens ... ... ... .. ... ... 238

11.3EntiersdÕun corpsquadratique ... ... ... ... ... .. ... ... .240

11.4DivisibilitŽdans unanneauprincipal ... ... ... .. ... ... ... .241

11.5DŽcompositionen facteursirrŽductibles. ... ... .. ... ... ... .244

11.6Anneau desentiersde Gauss.. ... ... ... ... .. ... ... ... 246

11.8Quotients danslesanneaux principaux.. ... ... ... .. ... ... 250

11.9Exercices duchapitre11. ... ...... ... ... ... .. ... ... .252

7

IVThŽoriedes nombres261

12ArithmŽtique263

12.1Congruences, anneauZ/nZ..........................263

12.3RŽsidusquadratiques ... ... ... ... .. ... ... ... ... ... .267

12.4Nombres premiers... ...... ... ... ... .. ... ... ... ..269

12.5Nombres deMersenne,nombresde Fermat.. ... ...... .. ... .270

12.7Equationsdiophantiennes ... ... ... ... .. ... ... ... ... .273

12.8Exercices duchapitre12.. ... ..... ... ... ... ... ... ... 277

13NombresalgŽbriques 289

13.3Nombres transcendants..... ... ... .. ... ... ... ... ... 292

13.4Lecorps desnombr esalgŽbriques. ... ...... ... ... .. ... .294

13.7Exercices duchapitre13.. ... ...... .. ... ... ... ... ... 301

14Anneaux factoriels307

14.1UnegŽnŽralisation desanneauxprincipaux ... ... .. ... ... ... 307

14.2Polyn™mes primitifs.. ... ... ... ... ... .. ... ... ... ..310

14.3IrrŽductibilitŽdes polyn™mes. ... ... ... ... ... ... ... .. .311

14.4Anneau despolyn™messur unanneaufactoriel ... ... ... .. ... .312

14.6IrrŽductibilitŽdes polyn™mescyclotomiques ... ... ... ... ... .317

INDEX319

8

GROUPES

9

Chapitre1

LacatŽgoriedes groupes

1.1FactorisationdÕune application

DŽÞnition.

Onappeller elationdՎquivalencesur unensemblenonvideE,uner elationbinaire

RsurEvŽriÞantlesconditions suivantes:

a)"x#ExRx(rŽßexivitŽ), b)"x#E"y#ExRy$yRx(symŽtrie),

LapartieC

x ={y#E|xRy}deEestappelŽela classedՎquivalencemoduloRde x .Pourtout z#C y onaz#C x y &C x .Commeles conditionsx#C y ety#C x x &C y etdoncC x =C y .Ilen rŽsulte quetout x#EappartientˆlÕune despartiesde lafamille (Cquotesdbs_dbs45.pdfusesText_45