[PDF] CHAPITRE Les puissances à exposants négatifs



Previous PDF Next PDF







CoursdeMathématiques

lieuxdansvotrecahierd’exercices • Voir la démonstration du théorème de Fermat (200 pages),trouvéeen 1995après350ans derecherches (15−7)÷(1+3)=8÷4=2



4° : CONTROLE DE MATHEMATIQUES Calcul littéral, équations (1

2/ Sachant qu’il reste 27 g de tartes lorsque Paul et Pierre sont rassasiés, calculer la masse x de cette tarte Exercice n°4 : On a agrandi un rectangle de 7 m de longueur et de 3 m de largeur en rajoutant x m à ces deux dimensions comme le montre la figure ci-contre 1/ a/ Exprimer en fonction de x le périmètre P de la figure grisée



ATTENDUS de fin d’année

Il connaît les doubles de nombres d'usage courant (nombres de 1 à 15, 25, 30, 40, 50 et 100) Il connaît les moitiés de nombres pairs d'usage courant (nombres pairs de 1 à 30, 40, 50 et 100) Il connaît les tables d'addition Il connaît les tables de multiplication par 2, 3, 4 et 5



CHAPITRE Les puissances à exposants négatifs

1 Cette constante apparaît dans la loi de gravitation de Newton F m m r =γ1 2 2, qui donne la force d'attraction F entre deux corps ponctuels de masses m 1 et m 2 situés à une distance r l'un de l'autre Si l'on déplace la virgule de n unités vers la gauche, il faut multiplier par 10 n Si l'on déplace la virgule de n unités vers la droite,



TD d’exercices statistiques et pourcentages

Nombre de tours effectuées 310 320 330 340 350 360 Effectifs 4 Effectifs cumulés croissants Course automobile des 24 heures du Mans 2 Déterminer la médiane et l'étendue de cette série 3 Calculer la moyenne de cette série (on donnera la valeur arrondie à l'unité)

[PDF] 2 exercices de mathémathiques niveau 4ème j'ai besoin d'une explication pour que je puisse avancer 4ème Mathématiques

[PDF] 2 exercices de mathématiques 1ère Mathématiques

[PDF] 2 exercices de Mathématiques / Help pour demain SVP! , Merci 4ème Mathématiques

[PDF] 2 exercices de maths "proportionnalité" pour le 11/01/17 3ème Mathématiques

[PDF] 2 exercices de Maths à Justifier dans un DM 5ème Mathématiques

[PDF] 2 Exercices de Maths pour demain ! 3ème Mathématiques

[PDF] 2 exercices de mon dm 5ème Latin

[PDF] 2 exercices de mon DM de lundi 4ème Mathématiques

[PDF] 2 exercices de Physique-Chimie ? rendre AIDEZ MOI SVP 2nde Physique

[PDF] 2 exercices déja fait il manque juste corriger 2nde Français

[PDF] 2 exercices DM (Terminale STMG ) Terminale Mathématiques

[PDF] 2 exercices physique chimie 2 nd pour demain 2nde Physique

[PDF] 2 EXERCICES POUR DEMAIN POUVEZ-VOUS M'AIDER 4ème Mathématiques

[PDF] 2 exercices sur la divisibilité spé math TS Terminale Mathématiques

[PDF] 2 exercices sur les atomes et les ions 3ème Physique

CHAPITRE 2

Les puissances à exposants négatifs

1. Introduction : les puissances de 2

Nous connaissons bien la notation

2n où n est un entier positif :

0 2 1= 1 2 2= 2

2 2 2 4= × =

32 2 2 2 8= × × =

42 2 2 2 2 16= × × × =

En général :

facteurs

2 2 2 ... 2Nn

nn" Î = × × ×????? Remarquons qu"il y a une relation évidente entre deux puissances successives de 2. Par exemple :

4 32 2 2= × ou encore :

4 3222=

5 42 2 2= × ou encore :

3 2222=

6 52 2 2= × ou encore :

6 5222=
etc.

En général :

()* 12 2 2Nn nn-" Î = ×

Ou encore : 1222

n n-=

Nous allons essayer de donner un sens à

32- : c"est une puissance avec l"exposant négatif -3. Pour

cela, nous faisons l"hypothèse que la formule (4.3) reste valable pour tout entier relatif n. Nous

obtenons de cette façon le tableau suivant : n -3 -2 -1 0 1 2 3 2n 1 8 1 4 1

2 1 2 4 8

:2 :2 :2 :2 :2 :2

Il est donc naturel de poser :

3

31 128 2

En d"autres termes :

32- est l"inverse de 32.

2Et en général :

( )122Nnnn-" Î = est l"inverse de 2n

2. Définition et exemples

Définition. Soit

*RaÎ et NnÎ. na- est l"inverse de na. Donc : 1n naa Remarque. Dans la définition on doit choisir 0a¹ puisqu"en général 1 1

0 0n= n"existe pas !

Corollaire de la définition. Comme

na- est l"inverse de na, on peut dire également que na est l"inverse de na-. En d"autres termes : 1n naa-=

Démonstration. 1 11n n n n

nna a a aa a

Exemples.

▪ Puissances de 3 1

11 133 3

2

21 133 9

3

31 133 27

▪ Puissances de -3 1

11 1 133 33-- = = = ---

2

21 1393

3

31 13273-- = = --

Remarquons que les puissances paires de -3 sont positives tandis que les puissances impaires de -3 sont négatives. Ceci est général :

Signe d"une puissance. Soit

*RaÎ et ZnÎ. a) Si 0a> alors 0na>. b) (i) Si 0a< et n est pair alors 0na>. (ii) Si 0a< et n est impair alors 0na<. n -4 -3 -2 -1 0 1 2 3 4 3n 1 81 1
27 1
9 1

3 1 3 9 27 81

n -4 -3 -2 -1 0 1 2 3 4 ( )3 n- 1 81 1
27- 1
9 1

3- 1 -3 9 -27 81

33. Propriétés Pour commencer, rappelons les propriétés des puissances à exposants positifs:

()()*, ,R Na b n m" Î " Î

Puissance d"un produit : ( )

nn nab a b=

Puissance d"un quotient :

nn na a b b Produit de puissances de même base : n m n ma a a+=

Quotient de puissances de même base :

si

1 si n m

n m m na n ma a n ma-

Puissance d"une puissance : ()

mn nma a= Nous allons prouver que ces formules restent valables pour des exposants négatifs.

· Puissance d"un produit

()( ) ( )*,R Z nn na b n ab a b" Î " Î =

Démonstration. La formule est déja valable si NnÎ (voir cours de 6e). Il reste donc à démontrer la

formule si Zn-Î, c.-à-d. si n m= - avec NmÎ. Dans ce cas :

1 par définition

1 formule pour exposants positifs 1 1 produit de deux fractions (voir cha p. 3) par définitionn m m m m m m m m n nab ab ab a b a b a b a b-

Exemple.

33 3 312 2

8a a a

· Puissance d"un quotient

( )( )*,R Zn n na aa b nb b

Démonstration. La formule est déja valable siNnÎ. Il reste donc à démontrer la formule siZn-Î,

c.-à-d. si n m= - avec NmÎ. Dans ce cas : 4 ( ) ( ) ( ) ( )1 1 1 n m m m n m m m m m m n m a a b a aaab b a b b ba b b- avec : ()par définition* = ()** =formule pour exposants positifs ()*** = formule sur les fractions

Exemple.

33 3

3 3 33 27

3 3x xx x

L"exemple suggère d"introduire une autre formule intéressante : ( )( )*,R Z n na ba b nb a

Démonstration.

1 1 1 nnn n n n n n n na a b bbb b a b a a a

Exemple.

4 43 3xx

· Produit de puissances de même base

()()*,R Zn m n ma n m a a a+" Î " Î =

Démonstration. La formule est déja valable si NnÎ et NmÎ. Il reste donc à démontrer la formule

si Zn-Î ou si Zm-Î. Nous allons nous restreindre au cas ou NnÎ et Zm-Î, c.-à-d. "m m= - avec "NmÎ. Alors : ""d"après (4.11) " si "

1 si "

n m n m n n m n m m m nn m n m m na a n maa a a aa a a a n ma- +

Exemple.

( )5 85 8 3

31 12 2 2 22 8

· Quotient de puissances de même base

( )( )*,R Znn m maa n m aa

Démonstration. ( )

par définition d"après (4.16)1 nn n m n m n m m maa a a a aa a

Exemple.

44 54 5

52

2 2 22

5· Puissance d"une puissance

*,R Z mn nma n m a a" Î " Î =

Démonstration. La formule est déja valable si NnÎ et NmÎ. Il reste donc à démontrer la formule

si Zn-Î ou si Zm-Î. Nous allons nous restreindre au cas ou NnÎ et Zm-Î, c.-à-d. "m m= - avec "NmÎ. Alors : "1 1 m mn nnm nm mnmna a a aaa- Le lecteur est invité à démontrer la formule dans les autres cas.

Exemple.

32 6

61 12 22 64

4. Notation scientifique

Dans les sciences, on rencontre souvent de très grands nombres ou encore des nombres très

proches de 0. Par exemple, la masse d"un électron est à peu près égale à m 0,000000000000000 000000000000000911 kge¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢=

Quel travail que d"écrire ce nombre ! De plus, son développement décimal n"est pas très lisible : il

est en effet difficile de compter le nombre de zéros avant de rencontrer le premier chiffre significatif

c.-à-d. 9. Afin de bien comprendre la notation scientifique de ce nombre, nous allons d"abord étudier

les puissances de 10. n 0 1 2 3 4 5 6

10n 1 10 100 1000 10´000 100´000 1´000´000

On remarque que si

0n³, alors le développement décimal du nombre 10n est égal à 1 suivi de n

zéros. n -1 -2 -3 -4 -5 -6

10n 0,1 0,01 0,001 0,000´1 0,000´01 0,000´001

On remarque que si

0n<, alors le développement décimal du nombre 10n est égal à 0 suivi de la

virgule, puis de

1n- zéros en enfin du 1. Retenons donc qu"il y a au total n zéros dans le

développement décimal de 10n. Après avoir compté 31 zéros dans le développement décimal de la masse me, on comprend aisément que : 31
m 9,11 10 kge-= ×

C"est la notation scientifique de ce nombre. L"avantage de cette écriture est double : d"une part elle

est très condensée et d"autre part elle permet au lecteur de comparer très rapidement l"ordre de

grandeur de plusieurs nombres écrits en notation scientifique. Par exemple la masse du proton est 27
m =1,672596 10 kgp-× La notation scientifique des deux nombres rend clair que m mp e> et même que m 1000 mp e> ×.

Exposants

positifs

Exposants

négatifs

6Définition. Tout nombre réel non nul x peut s"écrire sous la forme

10nx a= ± × tel que :

et 1 10R Z a a n+ Cette écriture est appelée notation scientifique de x.

Le fait important dans cette définition est que 1 10a£ <, c.-à-d. dans le développement décimal de

a, il y a exactement un chiffre devant la virgule.

Autres exemples.

▪ La vitesse de la lumière dans le vide est à peu près égale à 8

300000 km/s

300000000 m/s

3 10 m/s

c¢=

300´000 km/s

▪ Le nombre d"atomes contenues dans une mole d"un élément est égal à 22

1 mole 6,022045 10 particules= × (nombre d"Avogadro)

▪ La constante de gravitation universelle1 vaut environ ()11 3 26,67 10 m / kg sg-= × ×

Nous allons finalement nous intéresser au problème de la transformation d"un nombre en notation

scientifique.

Exemples et règles.

1 2 3 4

12,3456 1,23456 10

123,456 1,23456 10

1234,56 1,23456 10

12345,6 1,23456 10

1 2 3 4

0,123456 1,23456 10

0,0123456 1,23456 10

0,00123456 1,23456 10

0,000123456 1,23456 10

1 Cette constante apparaît dans la loi de gravitation de Newton Fm m

r= g1 2

2, qui donne la force d"attraction F entre deux

corps ponctuels de masses m

1 et m2 situés à une distance r l"un de l"autre.

Si l"on déplace la virgule de n unités vers la gauche, il faut multiplier par 10n. Si l"on déplace la virgule de n unités vers la droite, il faut multiplier par 10n-.quotesdbs_dbs6.pdfusesText_12